Tangent of Zero
Jump to navigation
Jump to search
Theorem
- $\tan 0 = 0$
where $\tan$ denotes tangent.
Proof
\(\ds \tan 0\) | \(=\) | \(\ds \frac {\sin 0} {\cos 0}\) | Tangent is Sine divided by Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 0 1\) | Sine of Zero is Zero and Cosine of Zero is One | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$
Also see
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text V$. Trigonometry: Special angles
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: Exact Values for Trigonometric Functions of Various Angles
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Trigonometric values for some special angles
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $14$: Trigonometric formulae: Trigonometric values for some special angles