Tangent of i

From ProofWiki
Jump to navigation Jump to search

Theorem

$\tan i = \paren {\dfrac {e^2 - 1} {e^2 + 1} } i$

where $\tan$ denotes the complex tangent function and $i$ is the imaginary unit.


Proof 1

\(\ds \tan i\) \(=\) \(\ds \frac {\sin i} {\cos i}\) Definition of Complex Tangent Function
\(\ds \) \(=\) \(\ds \frac {\paren {\frac e 2 - \frac 1 {2 e} } i} {\frac e 2 + \frac 1 {2 e} }\) Sine of $i$ and Cosine of $i$
\(\ds \) \(=\) \(\ds \paren {\frac {e - \frac 1 e} {e + \frac 1 e} } i\) multiplying denominator and numerator by $2$
\(\ds \) \(=\) \(\ds \paren {\frac {e^2 - 1} {e^2 + 1} } i\) multiplying denominator and numerator by $e$

$\blacksquare$


Proof 2

\(\ds \tan i\) \(=\) \(\ds i \tanh 1\) Hyperbolic Tangent in terms of Tangent
\(\ds \) \(=\) \(\ds \paren {\frac {e^1 - e^{-1} } {e^1 + e^{-1} } } i\) Definition of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \paren {\frac {e^2 - 1} {e^2 + 1} } i\) multiplying denominator and numerator by $e$

$\blacksquare$


Also see