Tangent to Cycloid passes through Top of Generating Circle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $C$ be a cycloid generated by the equations:

$x = a \paren {\theta - \sin \theta}$
$y = a \paren {1 - \cos \theta}$

Then the tangent to $C$ at a point $P$ on $C$ passes through the top of the generating circle of $C$.


Proof

From Tangent to Cycloid, the equation for the tangent to $C$ at a point $P = \tuple {x, y}$ is given by:

$(1): \quad y - a \paren {1 - \cos \theta} = \dfrac {\sin \theta} {1 - \cos \theta} \paren {x - a \theta + a \sin \theta}$

From Equation of Cycloid, the point at the top of the generating circle of $C$ has coordinates $\tuple {2 a, a \theta}$.

Substituting $x = 2 a$ in $(1)$:

\(\ds y - a \paren {1 - \cos \theta}\) \(=\) \(\ds \dfrac {\sin \theta} {1 - \cos \theta} \paren {a \theta - a \theta + a \sin \theta}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds a \paren {1 - \cos \theta} + \dfrac {\sin \theta} {1 - \cos \theta} a \sin \theta\)
\(\ds \) \(=\) \(\ds \frac {a \paren {1 - \cos \theta}^2 + a \sin^2 \theta} {1 - \cos \theta}\)
\(\ds \) \(=\) \(\ds \frac {a \paren {1 - 2 \cos \theta + \cos^2 \theta} + a \sin^2 \theta} {1 - \cos \theta}\)
\(\ds \) \(=\) \(\ds \frac {a \paren {1 - 2 \cos \theta + 1} } {1 - \cos \theta}\)
\(\ds \) \(=\) \(\ds \frac {a \paren {2 - 2 \cos \theta} } {1 - \cos \theta}\)
\(\ds \) \(=\) \(\ds 2 a\)

That is, the tangent to $C$ passes through $\tuple {a \theta, 2 a}$ as was required.

$\blacksquare$


Sources