Taylor Series of Logarithm of Gamma Function
Theorem
Let $\gamma$ denote the Euler-Mascheroni constant.
Let $\map \zeta s$ denote the Riemann zeta function.
Let $\map \Gamma z$ denote the gamma function.
Let $\Log$ denote the natural logarithm.
Then $\map \Log {\map \Gamma z}$ has the power series expansion:
\(\ds \map \Log {\map \Gamma z}\) | \(=\) | \(\ds -\map \gamma {z - 1} + \sum_{k \mathop = 2}^\infty \frac {\paren {-1}^k \map \zeta k} k \paren {z - 1}^k\) |
which is valid for all $z \in \C$ such that $\cmod {z - 1} < 1$.
Proof
From Gamma Difference Equation:
- $\map \Gamma {z + 1} = z \map \Gamma z$
Hence:
\(\ds \frac {\d} {\d z} \map \Log {\map \Gamma {z + 1} }\) | \(=\) | \(\ds \frac {\d} {\d z} \map \Log {z \map \Gamma z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\d} {\d z} \map \Log {\map \Gamma z} + \map \Log z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\d} {\d z} \map \Log {\map \Gamma z} + \frac {\d} {\d z} \map \Log z\) | Sum Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\d} {\d z} \map \Log {\map \Gamma z} + \frac 1 z\) | Derivative of Natural Logarithm Function |
Successive use of this identity gives us
\(\ds \frac {\d} {\d z} \map \Log {\map \Gamma z}\) | \(=\) | \(\ds \frac {\d} {\d z} \map \Log {\map \Gamma {z + M} } - \sum_{k \mathop = 0}^{M - 1} \frac 1 {z + k}\) |
and thus from the Sum Rule for Derivatives:
\(\ds \frac {\d^n} {\d z^n} \map \Log {\map \Gamma z}\) | \(=\) | \(\ds \frac {\d^n} {\d z^n} \map \Log {\map \Gamma {z + M} } + \sum_{k \mathop = 0}^{M - 1} \frac {\paren {-1}^n \paren {n - 1}!} {\paren {z + k}^n}\) |
From Stirling's Formula for Gamma Function:
\(\ds \map \Log {\map \Gamma {z + 1} }\) | \(=\) | \(\ds z \map \Log {\map \Gamma z} - z + \frac 1 2 \map \Log z + \map \OO {\frac 1 z}\) | ||||||||||||
\(\ds \frac {\d} {\d z} \map \Log {\map \Gamma {z + 1} }\) | \(=\) | \(\ds \map \Log z + \map \OO {\frac 1 z}\) | ||||||||||||
\(\ds \frac {\d^n} {\d z^n} \map \Log {\map \Gamma {z + 1} }\) | \(=\) | \(\ds \map \OO {\frac 1 z}\) | ||||||||||||
\(\ds \frac {\d} {\d z} \map \Log {\map \Gamma {z + M} } - \sum_{k \mathop = 0}^{M - 1} \frac 1 {z + k}\) | \(=\) | \(\ds \map \Log {z + M} - \sum_{k \mathop = 0}^{M - 1} \frac 1 {z + k} + \map \OO {\frac 1 {z + M} }\) | ||||||||||||
\(\ds \lim_{M \to \infty} \frac {\d} {\d z} \map \Log {\map \Gamma {z + M} } - \sum_{k \mathop = 0}^{M - 1} \frac 1 {z + k}\) | \(=\) | \(\ds \lim_{M \to \infty} \map \Log {z + M} - \sum_{k \mathop = 0}^{M - 1} \frac 1 {z + k} + \lim_{M \to \infty} \map \OO {\frac 1 {z + M} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{M \to \infty} \map \Log {z + M} - \sum_{k \mathop = 0}^{M - 1} \frac 1 {z + k}\) |
which by definition of the Euler-Mascheroni constant:
- $\displaystyle \frac {\d} {\d z} \map \Log {\map \Gamma 1} = \lim_{M \to \infty} \frac {\d} {\d z} \map \Log {\map \Gamma {1 + M} } - \sum_{k \mathop = 0}^{M - 1} \frac 1 {1 + k} = -\gamma$
Also:
- $\dfrac {\d^{1 + k} } {\d z^{1 + k}} \map \Log {\map \Gamma {z + 1} } = \map \OO {\frac 1 z}$
shows that:
- $\displaystyle \lim_{M \to \infty} \frac {\d^{1 + k} } {\d z^{1 + k} } \map \Log {\map \Gamma {M + 1} } = 0$
thus for $n > 1$:
\(\ds \frac {\d^n} {\d z^n} \map \Log {\map \Gamma 1}\) | \(=\) | \(\ds \frac {\d^n} {\d z^n} \map \Log {\map \Gamma {1 + M} } + \sum_{k \mathop = 1}^M \frac {\paren {-1}^n \paren {n - 1}!} {k^n}\) | ||||||||||||
\(\ds \frac {\d^n} {\d z^n} \map \Log {\map \Gamma 1}\) | \(=\) | \(\ds \lim_{M \to \infty} \frac {\d^n} {\d z^n} \map \Log {\map \Gamma {1 + M} } + \sum_{k \mathop = 1}^M \frac {\paren {-1}^n \paren {n - 1}!} {k^n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \zeta n \paren {n - 1}! \paren {-1}^n\) |
Thus by definition of Taylor series:
\(\ds \map \Log {\map \Gamma z}\) | \(=\) | \(\ds \map \Log {\map \Gamma 1} - \gamma \paren {z - 1} + \sum_{k \mathop = 2}^\infty \frac {\paren {-1}^k \map \zeta k \paren {k - 1}!} {k!} \paren {z - 1}^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\gamma \paren {z - 1} + \sum_{k \mathop = 2}^\infty \frac{\paren {-1}^k \map \zeta k} k \paren {z - 1}^k\) |
From Zeroes of Gamma Function, we see that $\map \Gamma z$ is non-zero everywhere.
Thus $\map \Log {\map \Gamma z}$ has poles only where $\Gamma$ does, that is, the negative integers.
Since the radius of convergence of a power series is equal to the distance of its center to the closest point where the function is not analytic:
The radius of convergence of $\map \Log {\map \Gamma z}$ is $\cmod {1 - 0} = 1$.
$\blacksquare$