Tetrahedral and Triangular Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

The only positive integers which are simultaneously tetrahedral and triangular are:

$1, 10, 120, 1540, 7140$


Proof

\(\ds 1\) \(=\) \(\ds \dfrac {1 \paren {1 + 1} \paren {1 + 2} } 6\) Closed Form for Tetrahedral Numbers
\(\ds \) \(=\) \(\ds \dfrac {1 \times \paren {1 + 1} } 2\) Closed Form for Triangular Numbers


\(\ds 10\) \(=\) \(\ds \dfrac {3 \paren {3 + 1} \paren {3 + 2} } 6\) Closed Form for Tetrahedral Numbers
\(\ds \) \(=\) \(\ds \dfrac {4 \times \paren {4 + 1} } 2\) Closed Form for Triangular Numbers


\(\ds 120\) \(=\) \(\ds \dfrac {8 \paren {8 + 1} \paren {8 + 2} } 6\) Closed Form for Tetrahedral Numbers
\(\ds \) \(=\) \(\ds \dfrac {15 \times \paren {15 + 1} } 2\) Closed Form for Triangular Numbers


\(\ds 1540\) \(=\) \(\ds \dfrac {20 \paren {20 + 1} \paren {20 + 2} } 6\) Closed Form for Tetrahedral Numbers
\(\ds \) \(=\) \(\ds \dfrac {55 \times \paren {55 + 1} } 2\) Closed Form for Triangular Numbers


\(\ds 7140\) \(=\) \(\ds \dfrac {34 \paren {34 + 1} \paren {34 + 2} } 6\) Closed Form for Tetrahedral Numbers
\(\ds \) \(=\) \(\ds \dfrac {119 \times \paren {119 + 1} } 2\) Closed Form for Triangular Numbers



Sources