# Topological Sum is Coproduct in Category of Topological Spaces

Jump to navigation
Jump to search

## Theorem

Let $\mathbf{Top}$ be the category of topological spaces.

Let $X$ and $Y$ be topological spaces, and let $X \sqcup Y$ be their topological sum.

Then $X \sqcup Y$ is the coproduct of $X$ and $Y$ in $\mathbf{Top}$.

## Proof

## Sources

- 2010: Steve Awodey:
*Category Theory*(2nd ed.) ... (previous) ... (next): $\S 3.2$: Example $3.6$