Transfinite Recursion Theorem/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\On$ denote the class of all ordinals.

Let $S$ denote the class of all ordinal sequences.

Let $g$ be a mapping such that $S \subseteq \Dom g$.


Then there exists a unique mapping $F$ on $\On$ such that:

$\forall \alpha \in \On: \map F \alpha = \map g {F \restriction \alpha}$

where $F \restriction \alpha$ denotes the restriction of $F$ to $\alpha$.


Proof

First we establish the following

Lemma

There exists an extending operation $E$ such that for every mapping $F$ on $\On$:

$\forall \alpha \in \On: \map {\paren {\map E {F \restriction \alpha} } } \alpha = \map g {F \restriction \alpha}$

$\Box$


By Characteristic of Extending Operation, there exists a mapping $F$ on $\On$ such that:

$\forall \alpha \in \On: F \restriction \alpha^+ = \map E {F \restriction \alpha}$

where:

$F \restriction \alpha$ denotes the restriction of $F$ to $\alpha$
$\alpha^+$ denotes the successor ordinal of $\alpha$.


Then:

\(\ds \forall \alpha \in \On: \, \) \(\ds \map F \alpha\) \(=\) \(\ds \map {\paren {F \restriction \alpha^+} } \alpha\)
\(\ds \) \(=\) \(\ds \map {\paren {\map E {F \restriction \alpha} } } \alpha\)
\(\ds \) \(=\) \(\ds \map g {F \restriction \alpha}\) by the lemma


It remains to demonstrate uniqueness of $F$.




Sources