Transformation of P-Norm
Jump to navigation
Jump to search
Theorem
Let $p, q \ge 1$ be real numbers.
Let $\ell^p$ denote the $p$-sequence space.
Let $\norm {\mathbf x}_p$ denote the $p$-norm.
Let $\mathbf x = \sequence {x_n} \in \ell^{p q}$.
Suppose further that $\mathbf x^p = \sequence { {x_n}^p} \in \ell^q$.
Then:
- $\norm {\mathbf x^p}_q = \norm {\mathbf x}_{p q}^p$
Proof
\(\ds \norm {\mathbf x^p}_q\) | \(=\) | \(\ds \paren {\sum_{n \mathop = 0}^\infty \size { {x_n}^p}^q}^{1 / q}\) | Definition of $p$-Norm | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum_{n \mathop = 0}^\infty \size {x_n}^{p q} }^{1 / q}\) | Power of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\sum_{n \mathop = 0}^\infty \size {x_n}^{p q} }^{1 / p q} }^p\) | Power of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm {\mathbf x}_{p q}^p\) | Definition of $p$-Norm |
$\blacksquare$