Triangle Inequality/Real Numbers/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y \in \R$ be real numbers.

Let $\size x$ denote the absolute value of $x$.


Then:

$\size {x + y} \le \size x + \size y$


Proof

We do a case analysis.


$(1): \quad x \ge 0, y \ge 0$

\(\ds x\) \(\ge\) \(\ds 0\)
\(\ds y\) \(\ge\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \size {x + y}\) \(=\) \(\ds x + y\)
\(\ds \) \(=\) \(\ds \size x + \size y\)

$\Box$


$(2): \quad x \le 0, y \le 0$

\(\ds x\) \(\le\) \(\ds 0\)
\(\ds y\) \(\le\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \size {x + y}\) \(=\) \(\ds -x - y\)
\(\ds \) \(=\) \(\ds \size x + \size y\)

$\Box$


$(3): \quad x \ge 0, y \le 0$

We have that $\size x = x$ and $\size y = -y$.

In this case we show:

$\size {x + y} \le \max \set {\size x, \size y}$


Let $\size x \le \size y$.

Then:

\(\ds x\) \(\le\) \(\ds -y\)
\(\ds \leadsto \ \ \) \(\ds y\) \(\le\) \(\ds y + x\) as $x \ge 0$
\(\ds \) \(\le\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \size {x + y}\) \(=\) \(\ds -\paren {x + y}\)
\(\ds \) \(\le\) \(\ds -y\)
\(\ds \) \(=\) \(\ds \size y\)


Let $\size x \ge \size y$.

Then:

\(\ds x\) \(\ge\) \(\ds -y\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\ge\) \(\ds x + y\) as $y \le 0$
\(\ds \) \(\ge\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \size {x + y} =\) \(=\) \(\ds x + y\)
\(\ds \) \(\le\) \(\ds x\)
\(\ds \) \(=\) \(\ds \size x\)


We have $\max \set {a, b} \le a + b$ for positive real numbers $a$ and $b$.

The result follows by taking $a = \size x$ and $b = \size y$.

$\Box$


$(4): \quad x \le 0, y \ge 0$

Follows by symmetry from the case $(3)$.

$\blacksquare$