Triangle Inequality/Real Numbers
Theorem
Let $x, y \in \R$ be real numbers.
Let $\size x$ denote the absolute value of $x$.
Then:
- $\size {x + y} \le \size x + \size y$
Proof 1
\(\ds \size {x + y}^2\) | \(=\) | \(\ds \paren {x + y}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x^2 + 2 x y + y^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size x^2 + 2 x y + \size y^2\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \size x^2 + 2 \size {x y} + \size y^2\) | Negative of Absolute Value‎ | |||||||||||
\(\ds \) | \(=\) | \(\ds \size x^2 + 2 \size x \cdot \size y + \size y^2\) | Absolute Value of Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\size x + \size y}^2\) |
Then by Order is Preserved on Positive Reals by Squaring:
- $\size {x + y} \le \size x + \size y$
$\blacksquare$
Proof 2
This can be seen to be a special case of Minkowski's Inequality, with $n = 1$.
$\blacksquare$
Proof 3
We have that Real Numbers form Ordered Integral Domain.
Therefore Sum of Absolute Values on Ordered Integral Domain applies directly.
$\blacksquare$
Proof 4
We do a case analysis.
$(1): \quad x \ge 0, y \ge 0$
\(\ds x\) | \(\ge\) | \(\ds 0\) | ||||||||||||
\(\ds y\) | \(\ge\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x + y}\) | \(=\) | \(\ds x + y\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \size x + \size y\) |
$\Box$
$(2): \quad x \le 0, y \le 0$
\(\ds x\) | \(\le\) | \(\ds 0\) | ||||||||||||
\(\ds y\) | \(\le\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x + y}\) | \(=\) | \(\ds -x - y\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \size x + \size y\) |
$\Box$
$(3): \quad x \ge 0, y \le 0$
We have that $\size x = x$ and $\size y = -y$.
In this case we show:
- $\size {x + y} \le \max \set {\size x, \size y}$
Let $\size x \le \size y$.
Then:
\(\ds x\) | \(\le\) | \(\ds -y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(\le\) | \(\ds y + x\) | as $x \ge 0$ | ||||||||||
\(\ds \) | \(\le\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x + y}\) | \(=\) | \(\ds -\paren {x + y}\) | |||||||||||
\(\ds \) | \(\le\) | \(\ds -y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size y\) |
Let $\size x \ge \size y$.
Then:
\(\ds x\) | \(\ge\) | \(\ds -y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(\ge\) | \(\ds x + y\) | as $y \le 0$ | ||||||||||
\(\ds \) | \(\ge\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x + y} =\) | \(=\) | \(\ds x + y\) | |||||||||||
\(\ds \) | \(\le\) | \(\ds x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size x\) |
We have $\max \set {a, b} \le a + b$ for positive real numbers $a$ and $b$.
The result follows by taking $a = \size x$ and $b = \size y$.
$\Box$
$(4): \quad x \le 0, y \ge 0$
Follows by symmetry from the case $(3)$.
$\blacksquare$
Proof 5
From Negative of Absolute Value, it is sufficient to prove that:
- $\size x + \size y \ge x + y$
and:
- $\size x + \size y \ge -\paren {x + y}$
By definition of absolute value:
- $x \le \size x$
and:
- $y \le \size y$
Then:
- $x + y \le \size x + \size y$
We also have that:
\(\ds -x\) | \(\le\) | \(\ds \size {-x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size x\) | Absolute Value of Negative | |||||||||||
\(\ds -y\) | \(\le\) | \(\ds \size {-y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \size y\) | Absolute Value of Negative | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds -\paren {x + y}\) | \(=\) | \(\ds \paren {-x} + \paren {-y}\) | |||||||||||
\(\ds \) | \(\le\) | \(\ds \size x + \size y\) |
Hence the result.
$\blacksquare$
Examples
Example: $\size {-1 + 3}$
- $2 = \size {-1 + 3} \le \size {-1} + \size 3 = 1 + 3 = 4$
Sources
- 1919: Horace Lamb: An Elementary Course of Infinitesimal Calculus (3rd ed.) ... (previous) ... (next): Chapter $\text I$. Continuity: $1$. Continuous Variation
- 1947: James M. Hyslop: Infinite Series (3rd ed.) ... (previous) ... (next): Chapter $\text I$: Functions and Limits: $\S 4$: Limits of Functions (footnote $\dagger$)
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $1$: Review of some real analysis: $\S 1.1$: Real Numbers: Proposition $1.1.9$
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $1$: Review of some real analysis: Exercise $1.5: 8$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): triangle inequality: 2.
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): absolute value: $\text {(ii)}$