Triple Angle Formulas/Hyperbolic Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

$\tanh {3 x} = \dfrac {3 \tanh x + \tanh^3 x} {1 + 3 \tanh^2 x}$

where $\tanh$ denotes hyperbolic tangent.


Proof

\(\ds \tanh {3 x}\) \(=\) \(\ds \frac {\sinh {3 x} } {\cosh {3 x} }\) Definition 2 of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \frac {3 \sinh x + 4 \sinh^3 x} {\cosh {3 x} }\) Triple Angle Formula for Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac {3 \sinh x + 4 \sinh^3 x} {4 \cosh^3 x - 3 \cosh x}\) Triple Angle Formula for Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac {3 \sinh x + 4 \sinh^3 x} {4 \cosh^3 x - 3 \cosh x} \frac {\paren {1 / \cosh^3 x} } {\paren {1 / \cosh^3 x} }\)
\(\ds \) \(=\) \(\ds \frac {\frac {3 \tanh x} {\cosh^2 x} + 4 \tanh^3 x} {4 - \frac {3 \cosh x} {\cosh^3 x} }\) Definition 2 of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \frac {3 \tanh x \sech^2 x + 4 \tanh^3 x} {4 - 3 \sech^2 x}\) Definition 2 of Hyperbolic Secant
\(\ds \) \(=\) \(\ds \frac {3 \tanh x \paren {1 - \tanh^2 x} + 4 \tanh^3 x} {4 - 3 \paren {1 - \tanh^2 x} }\) Sum of Squares of Hyperbolic Secant and Tangent
\(\ds \) \(=\) \(\ds \frac {3 \tanh x - 3 \tanh^3 x + 4 \tanh^3 x} {4 - 3 + 3 \tanh^2 x}\) multipying out
\(\ds \) \(=\) \(\ds \frac {3 \tanh x + \tanh^3 x} {1 + 3 \tanh^2 x}\) gathering terms

$\blacksquare$


Sources