# Ultraproduct is Well-Defined

This article needs proofreading.Please check it for mathematical errors.If you believe there are none, please remove `{{Proofread}}` from the code.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Proofread}}` from the code. |

This article needs to be tidied.Please fix formatting and $\LaTeX$ errors and inconsistencies. It may also need to be brought up to our standard house style.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Tidy}}` from the code. |

This article needs to be linked to other articles.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{MissingLinks}}` from the code. |

This page has been identified as a candidate for refactoring of basic complexity.Until this has been finished, please leave
`{{Refactor}}` in the code.
Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Refactor}}` from the code. |

## Theorem

Ultraproduct is well-defined.

## Proof

Specifically, following the definitions on ultraproduct, it is to be proved that:

- $(1) \quad f^\MM$ is well-defined
- $(2) \quad R^\MM$ is well-defined

First of all, we need to prove:

### Lemma

Following the definitions on ultraproduct:

- $\eqclass {m_{k, i} } \UU = \eqclass {m'_{k, i} } \UU$, $k = 1, \dotsc, n$

- $\set {i \in I: \tuple {m_{1, i}, \dots, m_{n, i} } = \tuple {m'_{1, i}, \dots, m'_{n, i} } } \in \UU$

### Proof

Let:

\(\ds I_k\) | \(:=\) | \(\ds \set {i \in I: m_{k, i} = m'_{k, i} }\) | ||||||||||||

\(\ds I^*\) | \(:=\) | \(\ds \set {i \in I: \tuple {m_{1, i}, \dots, m_{n, i} } = \tuple {m'_{1, i}, \dots, m'_{n, i} } } = \bigcap^n_{k = 1} I_k\) |

Suppose:

- $\eqclass {m_{k, i} } \UU = \eqclass {m'_{k, i} } \UU$ for $k = 1, \dotsc, n$

We have:

- $I_k \in \UU$ for $k = 1, \dotsc, n$

Since $\UU$ is closed under intersection:

- $I^* \in \UU$

On the other hand, suppose:

- $I^* \in \UU$

Since $\UU$ is upward-closed: {{explain|Check whether the above link should be Upper Section or Upper Closure}

- $I_k \in \UU$ for $k = 1, \dotsc, n$

Therefore:

- $\eqclass {m_{k, i} } \UU = \eqclass {m'_{k, i} } \UU$

$\blacksquare$

### Proposition 1

*The definition of $f^\MM$ is consistent.*

that is, for $\eqclass {m_{k, i} } \UU = \eqclass {m'_{k, i} } \UU$, $k = 1, \dotsc, n$

- $\eqclass {\map {f^{\MM_i} } {m_{1, i}, \dotsc, m_{n, i} } } \UU = \eqclass {\map {f^{\MM_i} } {m'_{1, i}, \dotsc, m'_{n, i} } } \UU$

### Proof

Firstly note that:

- $\set {i \in I: \map {f^{\MM_i} } {m_{1, i}, \dotsc, m_{n, i} } = \map {f^{\MM_i} } {m'_{1, i}, \dots, m'_{n, i} } } \supseteq \set {i \in I: \tuple {m_{1, i}, \dotsc, m_{n, i} } = \tuple {m'_{1, i}, \dotsc, m'_{n, i} } }$

and by $\UU$ is an ultrafilter on $I$:

- $\set {i \in I: \tuple {m_{1, i}, \dotsc, m_{n, i} } = \tuple {m'_{1, i}, \dotsc, m'_{n, i} } } \in \UU$

implies:

- $\set {i \in I: \map {f^{\MM_i} } {m_{1, i}, \dotsc, m_{n, i} } = \map {f^{\MM_i} } {m'_{1, i}, \dotsc, m'_{n, i} } } \in \UU$

Therefore:

- $\eqclass {m_{k, i} } \UU = \eqclass {m'_{k, i} } \UU$, $k = 1, \dotsc, n$

by the lemma, which is equvalent to:

- $\set {i \in I: \tuple {m_{1, i}, \dotsc, m_{n, i} } = \tuple {m'_{1, i}, \dotsc, m'_{n, i} } } \in \UU$

implies:

- $\eqclass {\map {f^{\MM_i} } {m_{1, i}, \dotsc, m_{n, i} } } \UU = \eqclass {\map {f^{\MM_i} } {m'_{1, i}, \dotsc, m'_{n, i} } } \UU$

$\blacksquare$

### Proposition 2

*The definition of $R^\MM$ is consistent.*

that is, for $\eqclass {m_{k, i} } \UU = \eqclass {m'_{k, i} } \UU$, $k = 1, \dotsc, n$:

- $\set {i \in I: \tuple {m_{1, i}, \dotsc, m_{n, i} } \in R^{\MM_i} } \in \UU$

- $\set {i \in I: \tuple {m'_{1, i}, \dotsc, m'_{n, i} } \in R^{\MM_i} } \in \UU$

### Proof

Let:

\(\ds S\) | \(:=\) | \(\ds \set {i \in I: \tuple {m_{1, i}, \dotsc, m_{n, i} } \in R^{\MM_i} }\) | ||||||||||||

\(\ds S'\) | \(:=\) | \(\ds \set {i \in I: \tuple {m'_{1, i}, \dotsc, m'_{n, i} } \in R^{\MM_i} }\) | ||||||||||||

\(\ds I^*\) | \(:=\) | \(\ds \set {i \in I: \tuple {m_{1, i}, \dotsc, m_{n, i} } = \tuple {m'_{1, i}, \dots, m'_{n, i} } }\) | ||||||||||||

\(\ds T\) | \(:=\) | \(\ds I^* \cap S\) | ||||||||||||

\(\ds T'\) | \(:=\) | \(\ds I^* \cap S'\) |

From the lemma:

- $I^* \in \UU$

therefore:

- $S \in \UU \implies T \in \UU$

Note that:

- $\tuple {m_{1, i}, \dots, m_{n, i} } = \tuple {m'_{1, i}, \dotsc, m'_{n, i} }$ for $i \in I^*$

we have:

- $T = T'$

Hence:

- $T' \in \UU$

and:

- $S' \in \UU$ since $S' \supseteq T'$

So far we have proved:

- $S \in \UU \implies S' \in \UU$

By symmetry:

- $S' \in \UU \implies S \in \UU$

$\blacksquare$