Union minus Symmetric Difference equals Intersection

From ProofWiki
Jump to navigation Jump to search

Theorem

$\paren {A \cup B} \setminus \paren {A \symdif B} = A \cap B$


Proof

\(\ds \paren {A \cup B} \setminus \paren {A \symdif B}\) \(=\) \(\ds \paren {A \cup B} \setminus \paren {\paren {A \cup B} \setminus \paren {A \cap B} }\) Definition 2 of Symmetric Difference
\(\ds \) \(=\) \(\ds \paren {A \cup B} \cap \paren {A \cap B}\) Set Difference with Set Difference
\(\ds \) \(=\) \(\ds A \cap B\) Intersection of Union with Intersection

$\blacksquare$