Union of Bijections with Disjoint Domains and Codomains is Bijection/Corollary

From ProofWiki
Jump to navigation Jump to search

Corollary to Union of Bijections with Disjoint Domains and Codomains is Bijection

Let $A$, $B$, $C$, and $D$ be sets or classes.

Let $A \cap B = C \cap D = \varnothing$.

Let $f: A \to C$ and $g: D \to B$ be bijections.


Then $f \cup g^{-1}: A \cup B \to C \cup D$ is also a bijection.


Proof

By definition of bijection, $g^{-1}: B \to D$ is a bijection.

Hence the result by Union of Bijections with Disjoint Domains and Codomains is Bijection.

$\blacksquare$