Union of Equivalences/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The union of two equivalence relations is not necessarily an equivalence relation itself.


Proof

This can be shown by giving an example.

Let $S = \set {a, b, c}$, and let $\RR_1$ and $\RR_2$ be equivalences on $S$ such that:

$\eqclass a {\RR_1} = \eqclass b {\RR_1} = \set {a, b}$
$\eqclass c {\RR_1} = \set c$
$\eqclass a {\RR_2} = \set a$
$\eqclass b {\RR_2} = \eqclass c {\RR_2} = \set {b, c}$


Let $\RR_3 = \RR_1 \cup \RR_2$.

Then:

\(\ds \tuple {a, b}\) \(\in\) \(\ds \RR_1\)
\(\ds \tuple {b, c}\) \(\in\) \(\ds \RR_2\)
\(\ds \leadsto \ \ \) \(\ds \tuple {a, b}\) \(\in\) \(\ds \RR_1 \cup \RR_2\)
\(\, \ds \land \, \) \(\ds \tuple {b, c}\) \(\in\) \(\ds \RR_1 \cup \RR_2\)
\(\ds \leadsto \ \ \) \(\ds \tuple {a, b}\) \(\in\) \(\ds \RR_3\)
\(\, \ds \land \, \) \(\ds \tuple {b, c}\) \(\in\) \(\ds \RR_3\)


However:

\(\ds \tuple {a, c}\) \(\notin\) \(\ds \RR_1\)
\(\, \ds \land \, \) \(\ds \tuple {a, c}\) \(\notin\) \(\ds \RR_2\)
\(\ds \leadsto \ \ \) \(\ds \tuple {a, c}\) \(\notin\) \(\ds \RR_1 \cup \RR_2\)
\(\ds \leadsto \ \ \) \(\ds \tuple {a, c}\) \(\notin\) \(\ds \RR_3\)


So $\RR_3$ is not transitive, and therefore $\RR_3 = \RR_1 \cup \RR_2$ is not an equivalence relation.

$\blacksquare$