Union of Interiors and Boundary Equals Whole Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \struct {S, \tau}$ be a topological space.

Let $A$ be a subset of $T$.


Then:

$S = \Int A \cup \partial A \cup \Int {A'}$

where:

$A' = S \setminus A$ denotes the complement of $A$ relative to $S$
$\Int A$ denotes the interior of $A$
$\partial A$ denotes the boundary of $A$.


Proof

\(\ds \Int A \cup \partial A \cup \Int {A'}\) \(=\) \(\ds \Int A \cup \Int {A'} \cup \partial A\) Union is Associative, Union is Commutative
\(\ds \) \(=\) \(\ds \Int A \cup \Int {A'} \cup \paren {\map \cl A \cap \map \cl {A'} }\) Boundary is Intersection of Closure with Closure of Complement
\(\ds \) \(=\) \(\ds \paren {\Int A \cup \Int {A'} \cup \map \cl A} \cap \paren {\Int A \cup \Int {A'} \cup \map \cl {A'} }\) Intersection Distributes over Union
\(\ds \) \(=\) \(\ds \paren {\Int A \cup \paren {\map \cl A}' \cup \map \cl A} \cap \paren {\Int A \cup \Int {A'} \cup \map \cl {A'} }\) Complement of Interior equals Closure of Complement
\(\ds \) \(=\) \(\ds \paren {\Int A \cup \paren {\paren {\map \cl A}' \cup \map \cl A} } \cap \paren {\Int A \cup \Int {A'} \cup \map \cl {A'} }\) Union is Associative
\(\ds \) \(=\) \(\ds \paren {\Int A \cup S} \cap \paren {\Int A \cup \Int {A'} \cup \map \cl {A'} }\) Union with Relative Complement
\(\ds \) \(=\) \(\ds \paren {\Int A \cup S} \cap \paren {\Int A \cup \Int {A'} \cup \paren {\Int A}'}\) Complement of Interior equals Closure of Complement
\(\ds \) \(=\) \(\ds \paren {\Int A \cup S} \cap \paren {\Int A \cup \paren {\Int A' \cup \Int {A'} } }\) Union is Associative, Union is Commutative
\(\ds \) \(=\) \(\ds \paren {\Int A \cup S} \cap \paren {S \cup \Int {A'} }\) Union with Relative Complement
\(\ds \) \(=\) \(\ds S \cap \paren {S \cup \Int {A'} }\) Union with Superset is Superset
\(\ds \) \(=\) \(\ds S \cap S\) Union with Superset is Superset
\(\ds \) \(=\) \(\ds S\) Set Intersection is Idempotent

$\blacksquare$


Sources