Union of Union of Relation is Union of Domain with Image

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $V$ be a basic universe.

Let $\RR \subseteq V \times V$ be a relation.

Let $\Dom \RR$ denote the domain of $\RR$.


Then:

$\map \bigcup {\bigcup \RR} = \Dom \RR \cup \Img \RR$

where:

$\bigcup \RR$ denotes the union of $\RR$
$\Dom \RR$ denotes the domain of $\RR$
$\Img \RR$ denotes the image of $\RR$.


Proof

\(\ds \bigcup \RR\) \(=\) \(\ds \set {z: \exists \tuple {x, y} \in \RR: z \in \tuple {x, y} }\) Definition of Union of Class
\(\ds \) \(=\) \(\ds \set {z: \exists \set {\set x, \set {x, y} } \in \RR: z \in \tuple {x, y} }\) Definition of Kuratowski Formalization of Ordered Pair
\(\ds \) \(=\) \(\ds \set {\set x, \set {x, y}: x \in \Dom \RR, \tuple {x, y} \in \RR}\)
\(\ds \leadsto \ \ \) \(\ds \map \bigcup {\bigcup \RR}\) \(=\) \(\ds \set {z: \exists X \in \bigcup \RR: z \in X}\) Definition of Union of Class
\(\ds \) \(=\) \(\ds \set {x, y: x \in \Dom \RR, \tuple {x, y} \in \RR}\) Definition of $\bigcup \RR$
\(\ds \) \(=\) \(\ds \set {x, y: x \in \Dom \RR, y \in \Img \RR}\) Definition of Image of Relation
\(\ds \) \(=\) \(\ds \set {x: x \in \Dom \RR} \cup \set {y: y \in \Img \RR}\) Definition of Class Union
\(\ds \) \(=\) \(\ds \Dom \RR \cup \Img \RR\)

$\blacksquare$