Union with Superclass is Superclass

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ and $B$ be classes.


Then:

$A \subseteq B \iff A \cup B = B$

where:

$A \subseteq B$ denotes that $A$ is a subclass of $B$
$A \cup B$ denotes the union of $A$ and $B$.


Proof

Let $A \cup B = B$.

Then by definition of class equality:

$A \cup B \subseteq B$

Thus:

\(\ds x\) \(\in\) \(\ds A\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds A\) Rule of Addition
\(\, \ds \lor \, \) \(\ds x\) \(\in\) \(\ds B\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds A \cup B\) Definition of Class Union
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds B\) Definition of Subclass: $A \cup B \subseteq B$
\(\ds \leadsto \ \ \) \(\ds A\) \(\subseteq\) \(\ds B\) Definition of Subclass

$\Box$


Now let $A \subseteq B$.

We have:

\(\ds x\) \(\in\) \(\ds B\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds A\) Rule of Addition
\(\, \ds \lor \, \) \(\ds x\) \(\in\) \(\ds B\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds A \cup B\) Definition of Class Union
\(\ds \leadsto \ \ \) \(\ds B\) \(\subseteq\) \(\ds A \cup B\) Definition of Subclass

From Subset of Union, we have $S \cup T \supseteq T$.

We also have:


\(\ds x\) \(\in\) \(\ds A \cup B\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds A\) Rule of Addition
\(\, \ds \lor \, \) \(\ds x\) \(\in\) \(\ds B\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds B\) as $x \in A \implies x \in B$
\(\ds \leadsto \ \ \) \(\ds A \cup B\) \(\subseteq\) \(\ds B\) Definition of Subclass


Thus:

\(\ds A \cup B\) \(\subseteq\) \(\ds B\)
\(\ds B\) \(\subseteq\) \(\ds A \cup B\)

By definition of class equality:

$A \cup B = B$

$\blacksquare$


Also see


Sources