Unique Readability Theorem of Predicate Calculus

From ProofWiki
Jump to: navigation, search

Theorem

Each WFF of predicate logic which starts with a left bracket or a negation sign has exactly one main connective.


Proof

We have the following cases:

  1. $\mathbf A = \neg \mathbf B$, where $\mathbf B$ is a WFF of length $k$.
  2. $\mathbf A = \left({\mathbf B \circ \mathbf C}\right)$ where $\circ$ is one of the binary connectives.
  3. $\mathbf A = p \left({t_1, t_2, \ldots, t_n}\right)$, where $t_1, t_2, \ldots, t_n$ are terms, and $p \in \mathcal P_n$.
  4. $\mathbf A = ( Q x: \mathbf B )$, where $\mathbf B$ is a WFF of length $k-5$, $Q$ is a quantifier ($\forall$ or $\exists$) and $x$ is a variable.

We deal with these in turn.


Cases 1 and 2 are taken care of by Language of Propositional Logic has Unique Parsability.

Cases 3 and 4 do not start with either a left bracket or a negation sign, so do not have to be investigated.


$\blacksquare$


Sources