Unit Vectors in Complex Plane which are Vertices of Equilateral Triangle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\epsilon_1, \epsilon_2, \epsilon_3$ be complex numbers embedded in the complex plane such that:

$\epsilon_1, \epsilon_2, \epsilon_3$ all have modulus $1$
$\epsilon_1 + \epsilon_2 + \epsilon_3 = 0$

Then:

$\paren {\dfrac {\epsilon_2} {\epsilon_1} }^3 = \paren {\dfrac {\epsilon_3} {\epsilon_2} }^2 = \paren {\dfrac {\epsilon_1} {\epsilon_3} }^2 = 1$


Proof

We have that:

\(\ds \epsilon_1 + \epsilon_2 + \epsilon_3\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \epsilon_1 - \paren {-\epsilon_2}\) \(=\) \(\ds -\epsilon_3\)

Thus by Geometrical Interpretation of Complex Subtraction, $\epsilon_1$, $\epsilon_2$ and $\epsilon_3$ form the sides of a triangle.

As the modulus of each of $\epsilon_1$, $\epsilon_2$ and $\epsilon_3$ equals $1$, $\triangle \epsilon_1 \epsilon_2 \epsilon_3$ is equilateral.


Equliateral-Triangle-Unit-Sides.png


By Complex Multiplication as Geometrical Transformation:

\(\ds \arg \epsilon_1\) \(=\) \(\ds \arg \epsilon_2 \pm \dfrac {2 \pi} 3\) Complex Multiplication as Geometrical Transformation
\(\ds \leadsto \ \ \) \(\ds \arg \paren {\dfrac {\epsilon_2} {\epsilon_1} }\) \(=\) \(\ds \pm \dfrac {2 \pi} 3\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {\epsilon_2} {\epsilon_1}\) \(=\) \(\ds \cos \dfrac {2 \pi} 3 \pm i \sin \dfrac {2 \pi} 3\)
\(\ds \) \(=\) \(\ds \omega \text { or } \overline \omega\) where $\omega$, $\overline \omega$ are the complex cube roots of unity
\(\ds \leadsto \ \ \) \(\ds \paren {\dfrac {\epsilon_2} {\epsilon_1} }^3\) \(=\) \(\ds 1\)


The same analysis can be done to the other two pairs of sides of $\triangle \epsilon_1 \epsilon_2 \epsilon_3$.

Hence the result.

$\blacksquare$


Sources