Unitary Module of All Mappings is Unitary Module

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +_R, \times_R}$ be a ring with unity whose unity is $1_R$.

Let $\struct {G, +_G, \circ}_R$ be a unitary $R$-module.

Let $S$ be a set.

Let $\struct {G^S, +_G', \circ}_R$ be the module of all mappings from $S$ to $G$.


Then $\struct {G^S, +_G', \circ}_R$ is a unitary module.


Proof

From Module of All Mappings is Module, we have that $\struct {G^S, +_G', \circ}_R$ is an $R$-module.


To show that $\struct {G^S, +_G', \circ}_R$ is a unitary $R$-module, we verify the following:

$\forall f \in G^S: 1_R \circ f = f$


Let $\struct {G, +_G, \circ}_R$ be a unitary $R$-module.

Then:

\(\ds \forall x \in G: \, \) \(\ds 1_R \circ x\) \(=\) \(\ds x\) Left Module Axiom $\text M 4$: for $\struct {G, +_G, \circ}_R$

Thus:

\(\ds \forall f \in G^S, \forall x \in G: \, \) \(\ds \map {\paren {1_R \circ f} } x\) \(=\) \(\ds 1_R \circ \paren {\map f x}\) Definition of Module of All Mappings
\(\ds \) \(=\) \(\ds \map f x\) Definition of Unity of Ring

Hence the result.

$\blacksquare$


Sources