# Units of Gaussian Integers/Proof 2

## Theorem

Let $\struct {\Z \sqbrk i, +, \times}$ be the ring of Gaussian integers.

The set of units of $\struct {\Z \sqbrk i, +, \times}$ is $\set {1, i, -1, -i}$.

## Proof

Let $\alpha = a + b i$ be a unit of $\left({\Z \left[{i}\right], +, \times}\right)$.

Then by definition of unit:

$\exists\beta = c + d i \in \Z \left[{i}\right]: \alpha \beta = 1$

Let $\left\vert{\alpha}\right\vert$ denote the modulus of $\alpha$.

Then:

 $\displaystyle \left\vert{\alpha}\right\vert^2 \cdot \left\vert{\beta}\right\vert^2$ $=$ $\displaystyle \left\vert{\alpha \beta}\right\vert^2$ Modulus of Product $\displaystyle$ $=$ $\displaystyle \left\vert{1}\right\vert^2$ $\displaystyle$ $=$ $\displaystyle 1$

By Divisors of One, $\vert a\vert^2=1$ or $-1$

Since $\left\vert{\alpha}\right\vert$ and $\left\vert{\beta}\right\vert$ are positive integers:

$\left\vert{\alpha}\right\vert^2 =a^2+b^2= 1$

and so either:

$\left\vert{a}\right\vert = 1$ and $\left\vert{b}\right\vert = 0$

or:

$\left\vert{b}\right\vert = 1$ and $\left\vert{a}\right\vert = 0$.

Therefore, the set of units of $\left({\Z \left[{i}\right], +, \times}\right)$ is $\left\{ {\pm 1, \pm i}\right\}$, as required.

$\blacksquare$