# Universal Class is Proper/Proof 2

Jump to navigation
Jump to search

## Theorem

Let $V$ denote the universal class.

Then $V$ is a proper class.

## Proof

*This page is beyond the scope of ZFC, and should not be used in anything other than the theory in which it resides.*

*If you see any proofs that link to this page, please insert this template at the top.*

*If you believe that the contents of this page can be reworked to allow ZFC, then you can discuss it at the talk page.*

Let $I_\mathrm U$ be the identity mapping on $\mathrm U$.

By Identity Mapping is Bijection it follows that $I_\mathrm U$ is a bijection.

Therefore, by the Axiom of Limitation of Size, $\mathrm U$ is proper.

$\blacksquare$