Universal Property of Quotient Group

From ProofWiki
Jump to navigation Jump to search


Let $G,H$ be a groups.

Let $N\trianglelefteq G$ be an normal subgroup.

Let $\pi : G\to G/N$ be the projection.

Let $f:G\to H$ be a group homomorphism with $N\subset\ker f$.

Then there exists a unique group homomorphism $\overline f:G/N \to H$ such that $f = \overline f \circ \pi$.

$\xymatrix{ G \ar[d]^\pi \ar[r]^{\forall f} & H\\ G/N \ar[ru]_{\exists ! \bar f} }$


Note that Group Homomorphism is Invariant under Congruence Modulo Kernel.


By Universal Property of Quotient Set, there exists a unique such mapping $\overline f$.

A fortiori, there exists at most one such group homomorphism.



Also see