User:Ascii/ProofWiki Sampling Notes for Theorems

From ProofWiki
Jump to navigation Jump to search

I hope to not clog up $\mathsf{Pr} \infty \mathsf{fWiki}$ with Userpage notes. My dream for the site is that it has a solid core and these notes can help me contribute.

Sets and Elements

  1. Set is Subset of Itself
    $\forall S: S \subseteq S$
  2. Singleton of Element is Subset
    $x \in S \iff \{x\} \subseteq S$
  3. Subset Relation is Transitive
    $\paren {R \subseteq S} \land \paren {S \subseteq T} \implies R \subseteq T$
  4. Equivalence of Definitions of Set Equality
    $S = T \iff \paren {\forall x: x \in S \iff x \in T}$
    $S = T \iff S \subseteq T \land T \subseteq S$
  5. Set Equals Itself
    $S = S$
  6. Set Inequality
    $S \ne T \iff \left({S \nsubseteq T}\right) \lor \left({T \nsubseteq S}\right)$
  7. Empty Set is Subset of All Sets
    $\forall S: \O \subseteq S$
  8. Empty Set is Unique
    The empty set $\O$ is unique.
  9. Empty Set is Element of Power Set
    $\forall S: \O \in \mathcal P (S)$
  10. Set is Element of its Power Set
    $S \in \powerset S$
  11. Power Set of Empty Set
    $P \left({\varnothing}\right) = \left\{{\varnothing}\right\}$

Union

  1. Set Union is Idempotent
    $S \cup S = S$
  2. Union is Commutative
    $S \cup T = T \cup S$
  3. Union is Associative
    $(S \cup T) \cup R = S \cup (T \cup R)$
  4. Union with Empty Set
    $S \cup \O = S$
  5. Set is Subset of Union
    $S \subseteq S \cup T$
  6. Set Union Preserves Subsets
    $A \subseteq B, \ S \subseteq T \implies A \cup S \subseteq B \cup T$
  7. Union is Smallest Superset
    $\paren {S_1 \subseteq T} \land \paren {S_2 \subseteq T} \iff \paren {S_1 \cup S_2} \subseteq T$
  8. Union of Subsets is Subset
    $\left({S_1 \subseteq T}\right) \land \left({S_2 \subseteq T}\right) \implies \left({S_1 \cup S_2}\right) \subseteq T$
  9. Union with Superset is Superset
    $S \subseteq T \iff S \cup T = T$
  10. Set Union is Self-Distributive
    $\forall A, B, C: \left({A \cup B}\right) \cup \left({A \cup C}\right) = A \cup B \cup C = \left({A \cup C}\right) \cup \left({B \cup C}\right)$

Intersection

  1. Set Intersection is Idempotent
    $S \cap S = S$
  2. Intersection is Commutative
    $S \cap T = T \cap S$
  3. Intersection is Associative
    $A \cap \paren {B \cap C} = \paren {A \cap B} \cap C$
  4. Intersection is Subset
    $S \cap T \subseteq S$
  5. Intersection with Empty Set
    $S \cap \O = \O$
  6. Intersection of Subsets is Subset/Set of Sets
    Let $T$ be a set and $\mathbb S$ be a non-empty set of sets.
    Suppose that for each $S \in \mathbb S$: $S \subseteq T$
    Then $\bigcap \mathbb S \subseteq T$
  7. Intersection with Subset is Subset‎
    $S \subseteq T \iff S \cap T = S$
  8. Set Intersection is Self-Distributive
    $\forall A, B, C: \left({A \cap B}\right) \cap \left({A \cap C}\right) = A \cap B \cap C = \left({A \cap C}\right) \cap \left({B \cap C}\right)$

Union and Intersection

  1. Intersection is Subset of Union
    $S \cap T \subseteq S \cup T$
  2. Intersection Distributes over Union
    $R \cap \paren {S \cup T} = \paren {R \cap S} \cup \paren {R \cap T}$
  3. Union Distributes over Intersection
    $R \cup \paren {S \cap T} = \paren {R \cup S} \cap \paren {R \cup T}$
  4. Absorption Laws (Set Theory)/Intersection with Union
    $S \cap \paren {S \cup T} = S$
  5. Absorption Laws (Set Theory)/Union with Intersection
    $S \cup \paren {S \cap T} = S$
  6. Union equals Intersection iff Sets are Equal
    $\left({S \cup T = S}\right) \land \left({S \cap T = S}\right) \iff S = T$

Set Difference

  1. Set Difference is Subset
    $S \setminus T \subseteq S$
  2. Set Difference with Empty Set is Self
    $S \setminus \O = S$
  3. Set Difference with Superset is Empty Set
    $S \subseteq T \iff S \setminus T = \O$
  4. Set Difference with Self is Empty Set
    $S \setminus S = \O$
  5. Set Difference Equals First Set iff Empty Intersection
    $S \setminus T = S \iff S \cap T = \O$
  6. Equal Set Differences iff Equal Intersections
    $R \setminus S = R \setminus T \iff R \cap S = R \cap T$
  7. Set Difference Union Second Set is Union
    $\left({S \setminus T}\right) \cup T = S \cup T$
  8. Set Difference Union First Set is First Set
    $\paren {S \setminus T} \cup S = S$
  9. Set Difference with Union is Set Difference
    $\left({S \cup T}\right) \setminus T = S \setminus T$
  10. Intersection with Set Difference is Set Difference with Intersection
    $\left({R \setminus S}\right) \cap T = \left({R \cap T}\right) \setminus S$
  11. Set Difference Intersection with Second Set is Empty Set
    $\left({S \setminus T}\right) \cap T = \varnothing$
  12. De Morgan's Laws (Set Theory)/Set Difference/Difference with Intersection
    $S \setminus \paren {T_1 \cap T_2} = \paren {S \setminus T_1} \cup \paren {S \setminus T_2}$
  13. De Morgan's Laws (Set Theory)/Set Difference/Difference with Union
    $S \setminus \paren {T_1 \cup T_2} = \paren {S \setminus T_1} \cap \paren {S \setminus T_2}$
  14. Set Difference with Union
    $R \setminus \left({S \cup T}\right) = \left({R \cup T}\right) \setminus \left({S \cup T}\right) = \left({R \setminus S}\right) \setminus T = \left({R \setminus T}\right) \setminus S$
  15. Set Difference with Set Difference is Union of Set Difference with Intersection
    $R \setminus \left({S \setminus T}\right) = \left({R \setminus S}\right) \cup \left({R \cap T}\right)$
  16. Set Difference Union Intersection
    $S = \left({S \setminus T}\right) \cup \left({S \cap T}\right)$
  17. Set Difference of Intersection with Set is Empty Set
    $\left({S \cap T}\right) \setminus S = \varnothing$
    $\left({S \cap T}\right) \setminus T = \varnothing$
  18. Set Difference is Anticommutative
    $S = T \iff S \setminus T = T \setminus S = \varnothing$

Relative Complement

  1. Relative Complement of Empty Set
    $\complement_S \left({\varnothing}\right) = S$
  2. Relative Complement with Self is Empty Set
    $\complement_S \left({S}\right) = \varnothing$
  3. Relative Complement of Relative Complement
    $\relcomp S {\relcomp S T} = T$
  4. Intersection with Relative Complement is Empty
    $T \cap \complement_S \left({T}\right) = \varnothing$
  5. Union with Relative Complement
    $\complement_S \left({T}\right) \cup T = S$
  6. Set with Relative Complement forms Partition
    Let $\varnothing \subsetneqq T \subsetneqq S$.
    Then $\left\{{T, \complement_S \left({T}\right)}\right\}$ is a partition of $S$.
  7. Set Difference as Intersection with Relative Complement
    Let $A, B \subseteq S$.
    $A \setminus B = A \cap \relcomp S B$

Symmetric Difference

  1. Equivalence of Definitions of Symmetric Difference
    $S * T := \paren {S \setminus T} \cup \paren {T \setminus S}$
    $S * T = \paren {S \cup T} \setminus \paren {S \cap T}$
    $S * T = \left({S \cap \overline T}\right) \cup \left({\overline S \cap T}\right)$
    $S * T = \left({S \cup T}\right) \cap \left({\overline S \cup \overline T}\right)$
    $S * T := \left\{{x: x \in S \oplus x \in T}\right\}$
  2. Symmetric Difference is Commutative
    $S * T = T * S$
  3. Symmetric Difference with Self is Empty Set
    $S * S = \O$
  4. Symmetric Difference of Equal Sets
    $S = T \iff S * T = \O$
  5. Symmetric Difference with Empty Set
    $S * \O = S$
  6. Intersection Distributes over Symmetric Difference
    $\paren {R * S} \cap T = \paren {R \cap T} * \paren {S \cap T}$
    $T \cap \paren {R * S} = \paren {T \cap R} * \paren {T \cap S}$
  7. Symmetric Difference of Unions
    $\left({R \cup T}\right) * \left({S \cup T}\right) = \left({R * S}\right) \setminus T$
  8. Symmetric Difference is Associative
    $R * \paren {S * T} = \paren {R * S} * T$

Universe

  1. Intersection with Universe
    $\mathbb U \cap S = S$
  2. Union with Universe
    $\mathbb U \cup S = \mathbb U$
  3. Complement of Empty Set is Universe
    $\complement \paren \O = \mathbb U$
  4. Complement of Universe is Empty Set
    $\complement \paren {\mathbb U} = \O$
  5. Complement of Complement
    $\map \complement {\map \complement S} = S$
  6. Intersection with Complement
    $S \cap \complement \left({S}\right) = \varnothing$
  7. Union with Complement
    $S \cup \complement \left({S}\right) = \mathbb U$
  8. Set with Complement forms Partition
    Let $\varnothing \subset S \subset \mathbb U$.
    Then $S$ and its complement $\complement \left({S}\right)$ form a partition of the universal set $\mathbb U$.
  9. Set Difference as Intersection with Complement
    $A \setminus B = A \cap \complement \left({B}\right)$
  10. Intersection with Complement is Empty iff Subset
    $S \subseteq T \iff S \cap \complement \paren T = \O$
  11. Set Complement inverts Subsets
    $S \subseteq T \iff \complement \left({T}\right) \subseteq \complement \left({S}\right)$
  12. Set Difference of Complements
    $\complement \left({S}\right) \setminus \complement \left({T}\right) = T \setminus S$
  13. Empty Intersection iff Subset of Complement
    $S \cap T = \varnothing \iff S \subseteq \complement \paren T$
  14. Symmetric Difference of Complements
    $\map \complement S * \map \complement T = S * T$
  15. Symmetric Difference with Universe
    $\mathbb U * S = \complement \paren S$
  16. De Morgan's Laws (Set Theory)/Set Complement/Complement of Union
    $\overline {T_1 \cup T_2} = \overline T_1 \cap \overline T_2$
  17. De Morgan's Laws (Set Theory)/Set Complement/Complement of Intersection
    $\overline {T_1 \cap T_2} = \overline T_1 \cup \overline T_2$
  18. Symmetric Difference with Complement
    $S * \relcomp {} S = \mathbb U$

Cartesian Product

  1. Equality of Ordered Pairs
    $\tuple {a, b} = \tuple {c, d} \iff a = c \land b = d$
  2. Cartesian Product is Empty iff Factor is Empty
    $S \times T = \O \iff S = \O \lor T = \O$
  3. Cartesian Product is Anticommutative
    Let $S, T \ne \O$.
    Then $S \times T = T \times S \implies S = T$
  4. Cartesian Product of Subsets
    Let $A, B, S, T$ be sets such that $A \subseteq B$ and $S \subseteq T$.
    Then $A \times S \subseteq B \times T$.
    Also $A \times S \subseteq B \times T \iff A \subseteq B \land S \subseteq T$.
  5. Cartesian Product of Intersections
    $\paren {S_1 \cap S_2} \times \paren {T_1 \cap T_2} = \paren {S_1 \times T_1} \cap \paren {S_2 \times T_2}$
  6. Cartesian Product of Unions
    $\paren {S_1 \cup S_2} \times \paren {T_1 \cup T_2} = \paren {S_1 \times T_1} \cup \paren {S_2 \times T_2} \cup \paren {S_1 \times T_2} \cup \paren {S_2 \times T_1}$
  7. Cartesian Product Distributes over Union
    $A \times \paren {B \cup C} = \paren {A \times B} \cup \paren {A \times C}$
    $\paren {B \cup C} \times A = \paren {B \times A} \cup \paren {C \times A}$
  8. Cartesian Product Distributes over Set Difference
    $S \times \left({T_1 \setminus T_2}\right) = \left({S \times T_1}\right) \setminus \left({S \times T_2}\right)$
    $\left({T_1 \setminus T_2}\right) \times S = \left({T_1 \times S}\right) \setminus \left({T_2 \times S}\right)$
  9. Set Difference of Cartesian Products
    $\paren {S_1 \times S_2} \setminus \paren {T_1 \times T_2} = \paren {S_1 \times \paren {S_2 \setminus T_2} } \cup \paren {\paren {S_1 \setminus T_1} \times S_2}$