User:Dfeuer/Coset stuff in progress

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\left({G, \circ}\right)$ be a group and let $H$ be a subgroup of $G$.

Let $x, y \in G$.


Let:


Then:

\(\text {(1)}: \quad\) \(\ds x \in y \circ H\) \(\iff\) \(\ds x^{-1} \circ y \in H\)
\(\text {(2)}: \quad\) \(\ds x \in H \circ y\) \(\iff\) \(\ds x \circ y^{-1} \in H\)




Theorem

Let $\left({G, \circ}\right)$ be a group and let $H$ be a subgroup of $G$.

Let $x, y \in G$.


Let:


Then:

\(\text {(1)}: \quad\) \(\ds x \in y \circ H\) \(\iff\) \(\ds x^{-1} \circ y \in H\)


Proof

\(\ds \) \(\) \(\ds x \in y H\)
\(\ds \) \(\iff\) \(\ds \exists h' \in H: x = y h'\) Definition of Left Coset
\(\ds \) \(\iff\) \(\ds \exists h = h'^{-1} \in H: x h = y\) Group element properties
\(\ds \) \(\iff\) \(\ds \exists h \in H: h = x^{-1} y\) Group element properties
\(\ds \) \(\iff\) \(\ds x^{-1} y \in H\) Definition of Left Coset

$\blacksquare$




Theorem

Let $\left({G, \circ}\right)$ be a group and let $H$ be a subgroup of $G$.

Let $x, y \in G$.


Let:


Then:

\(\text {(1)}: \quad\) \(\ds x \in H \circ y\) \(\iff\) \(\ds x \circ y^{-1} \in H\)


Proof

Let $\left({G,*}\right)$ be the opposite group of $\left({G,\circ}\right)$.

Then:

$x \in H \circ y \iff x \in y * H$
$x \circ y^{-1} \in H \iff y^{-1} * x \in H$

Since $H$ is closed under inverses:

$x \circ y^{-1} \in H \iff x^{-1} * y \in H$

By Element in Left Coset iff Product with Inverse in Subgroup:

$x \in y * H \iff x^{-1} * y \in H$

Thus $(2)$ holds.

$\blacksquare$