User:Kc kennylau/sandbox

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a ring with unity $1_R$.

Let $\paren {-1}_R$ be the additive inverse of $1_R$.


Then:

$\paren {-1}_R \circ \paren {-1}_R = 1_R$


Proof

Let $0_R$ be the ring zero of $\left({R, +, \circ}\right)$.


Then:

\(\ds \paren {-1}_R \circ \paren {-1}_R\) \(=\) \(\ds 0_R + \paren {\paren {-1}_R \circ \paren {-1}_R}\) Ring Axiom $\text A3$: Identity for Addition
\(\ds \) \(=\) \(\ds \paren {1_R + \paren {-1}_R} + \paren {\paren {-1}_R \circ \paren {-1}_R}\) Ring Axiom $\text A4$: Inverses for Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {-1}_R + \paren {\paren {-1}_R \circ \paren {-1}_R} }\) Ring Axiom $\text A1$: Associativity of Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {\paren {-1}_R \circ 1_R} + \paren {\paren {-1}_R \circ \paren {-1}_R} }\) Ring Axiom $\text M2$: Identity Element for Ring Product
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {-1}_R \circ \paren {1_R + \paren {-1}_R} }\) Ring Axiom $\text D$: Distributivity of Product over Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {-1}_R \circ 0_R}\) Ring Axiom $\text A4$: Inverses for Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {\paren {-1}_R \circ 0_R} + 0_R}\) Ring Axiom $\text A3$: Identity for Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {\paren {-1}_R \circ 0_R} + \paren {\paren {-1}_R + 1_R} }\) Ring Axiom $\text A4$: Inverses for Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {\paren {\paren {-1}_R \circ 0_R} + \paren {-1}_R} + 1_R}\) Ring Axiom $\text A1$: Associativity of Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {\paren {\paren {-1}_R \circ 0_R} + \paren {\paren {-1}_R \circ 1_R} } + 1_R}\) Ring Axiom $\text M2$: Identity Element for Ring Product
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {\paren {-1}_R \circ \paren {0_R + 1_R} } + 1_R}\) Ring Axiom $\text D$: Distributivity of Product over Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {\paren {-1}_R \circ 1_R} + 1_R}\) Ring Axiom $\text A3$: Identity for Addition
\(\ds \) \(=\) \(\ds 1_R + \paren {\paren {-1}_R + 1_R}\) Ring Axiom $\text M2$: Identity Element for Ring Product
\(\ds \) \(=\) \(\ds 1_R + 0_R\) Ring Axiom $\text A4$: Inverses for Addition
\(\ds \) \(=\) \(\ds 1\) Ring Axiom $\text A3$: Identity for Addition

$\blacksquare$