Value of Plastic Constant
Jump to navigation
Jump to search
Theorem
The plastic constant $P$ is evaluated as:
\(\ds P\) | \(=\) | \(\ds \sqrt [3] {\frac {9 + \sqrt {69} } {18} } + \sqrt [3] {\frac {9 - \sqrt {69} } {18} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 \cdotp 32471 \, 79572 \, 44746 \, 02596 \, 09088 \, 54 \ldots\) |
Proof
By definition, the plastic constant $P$ is the real root of the cubic:
- $x^3 - x - 1 = 0$
Recall Cardano's Formula:
Let $P$ be the cubic equation:
- $a x^3 + b x^2 + c x + d = 0$ with $a \ne 0$
Then $P$ has solutions:
- $x_1 = S + T - \dfrac b {3 a}$
- $x_2 = - \dfrac {S + T} 2 - \dfrac b {3 a} + \dfrac {i \sqrt 3} 2 \paren {S - T}$
- $x_3 = - \dfrac {S + T} 2 - \dfrac b {3 a} - \dfrac {i \sqrt 3} 2 \paren {S - T}$
where:
- $S = \sqrt [3] {R + \sqrt {Q^3 + R^2} }$
- $T = \sqrt [3] {R - \sqrt {Q^3 + R^2} }$
where:
- $Q = \dfrac {3 a c - b^2} {9 a^2}$
- $R = \dfrac {9 a b c - 27 a^2 d - 2 b^3} {54 a^3}$
Here we have:
\(\ds a\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds b\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds c\) | \(=\) | \(\ds -1\) | ||||||||||||
\(\ds d\) | \(=\) | \(\ds -1\) |
Hence:
\(\ds Q\) | \(=\) | \(\ds \dfrac {3 \times 1 \times \paren {-1} - 0^2} {9 \times 1^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {-3} 9\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\dfrac 1 3\) | ||||||||||||
\(\ds R\) | \(=\) | \(\ds \dfrac {9 \times 1 \times 0 \times \paren {-1} - 27 \times 1^2 \times \paren {-1} - 2 \times 0^3} {54 \times 1^3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {27} {54}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2\) |
and so:
\(\ds \sqrt {Q^3 + R^2}\) | \(=\) | \(\ds \sqrt {\paren {-\dfrac 1 3}^3 + \paren {\dfrac 1 2}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\dfrac 1 4 - \dfrac 1 {27} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\dfrac {27 - 4} {108} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\dfrac {3 \times 23} {3 \times 2^2 \times 3^3} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt {\dfrac {69} {18^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\sqrt {69} } {18}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds S = \sqrt [3] {R + \sqrt {Q^3 + R^2} }\) | \(=\) | \(\ds \sqrt [3] {\dfrac 1 2 + \dfrac {\sqrt {69} } {18} }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt [3] {\dfrac {9 + \sqrt {69} } {18} }\) | ||||||||||||
\(\ds T = \sqrt [3] {R - \sqrt {Q^3 + R^2} }\) | \(=\) | \(\ds \sqrt [3] {\dfrac 1 2 - \dfrac {\sqrt {69} } {18} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt [3] {\dfrac {9 - \sqrt {69} } {18} }\) |
Then:
\(\ds S + T - \dfrac b {3 a}\) | \(=\) | \(\ds \sqrt [3] {\dfrac {9 + \sqrt {69} } {18} } + \sqrt [3] {\dfrac {9 - \sqrt {69} } {18} } - \dfrac 0 {3 \times 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sqrt [3] {\dfrac {9 + \sqrt {69} } {18} } + \sqrt [3] {\dfrac {9 - \sqrt {69} } {18} }\) |
The number can then be calculated.
Since $S \ne T$, the other two roots $x_2, x_3$ has non-zero imaginary parts $\pm \dfrac {i \sqrt 3} 2 \paren {S - T}$.
Hence the root above is the only real root.
$\blacksquare$
Sources
- 1983: François Le Lionnais and Jean Brette: Les Nombres Remarquables ... (previous) ... (next): $1,32471 795 \ldots$
- Piezas, Tito III, van Lamoen, Floor and Weisstein, Eric W. "Plastic Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PlasticConstant.html