Vandermonde Matrix Identity for Cauchy Matrix/Examples/nxn
Jump to navigation
Jump to search
Example of Vandermonde Matrix Identity for Cauchy Matrix
![]() | This article needs to be tidied. Please fix formatting and $\LaTeX$ errors and inconsistencies. It may also need to be brought up to our standard house style. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Tidy}} from the code. |
The methods of the $3 \times 3$ example apply unchanged for the general $n \times n$ Cauchy matrix:
Assume values $\set {x_1, \ldots, x_n, y_1, \ldots, y_n}$ are distinct. Then:
- $\map \det {\begin{smallmatrix} \dfrac 1 {x_1 - y_1} & \dfrac 1 {x_1 - y_2} & \cdots & \dfrac 1 {x_1 - y_n} \\ \dfrac 1 {x_2 - y_1} & \dfrac 1 {x_2 - y_2} & \cdots & \dfrac 1 {x_2 - y_n} \\ \vdots & \vdots & \cdots & \vdots \\ \dfrac 1 {x_n - y_1} & \dfrac 1 {x_n - y_2} & \cdots & \dfrac 1 {x_n - y_n} \\ \end{smallmatrix} } = \paren {-1}^n \dfrac {\ds \prod_{1 \mathop \le j \mathop < i \mathop \le n} \paren {x_i - x_j} \quad \prod_{1 \mathop \le j \mathop < i \mathop \le n} \paren {y_i - y_j} } {\ds \prod_{i \mathop = 1}^n \prod_{j \mathop = 1}^n \paren {x_i - y_j} }$ Value of Cauchy Determinant
Assume values $\set {x_1, \ldots, x_n, -y_1, \ldots, -y_n}$ are distinct, then replace in the preceding equation $y_i$ by $-y_i$, $1 \le i \le n$:
- $\map \det {\begin{smallmatrix} \dfrac 1 {x_1 + y_1} & \dfrac 1 {x_1 + y_2} & \cdots & \dfrac 1 {x_1 + y_n} \\ \dfrac 1 {x_2 + y_1} & \dfrac 1 {x_2 + y_2} & \cdots & \dfrac 1 {x_2 + y_n} \\ \vdots & \vdots & \cdots & \vdots \\ \dfrac 1 {x_n + y_1} & \dfrac 1 {x_n + y_2} & \cdots & \dfrac 1 {x_n + y_n} \\ \end{smallmatrix} } = \paren {-1}^n \dfrac {\ds \prod_{1 \mathop \le j \mathop < i \mathop \le n} \paren {x_i - x_j} \quad \prod_{1 \mathop \le j \mathop < i \mathop \le n} \paren {y_j - y_i} } {\ds \prod_{i \mathop = 1}^n \prod_{j \mathop = 1}^n \paren {x_i + y_j} }$ Value of Cauchy Determinant
$\blacksquare$