Variance of Gaussian Distribution/Proof 2
Jump to navigation
Jump to search
Theorem
Let $X \sim N \paren {\mu, \sigma^2}$ for some $\mu \in \R, \sigma \in \R_{> 0}$, where $N$ is the Gaussian distribution.
Then:
- $\var X = \sigma^2$
Proof
By Moment Generating Function of Gaussian Distribution, the moment generating function of $X$ is given by:
- $\map {M_X} t = \map \exp {\mu t + \dfrac 1 2 \sigma^2 t^2}$
From Variance as Expectation of Square minus Square of Expectation:
- $\var X = \expect {X^2} - \paren {\expect X}^2$
From Moment Generating Function of Gaussian Distribution: Second Moment:
- $\map { {M_X}''} t = \paren {\sigma^2 + \paren {\mu + \sigma^2 t}^2 } \map \exp {\mu t + \dfrac 1 2 \sigma^2 t^2}$
From Moment in terms of Moment Generating Function, we also have:
- $\expect {X^2} = \map { {M_X}''} 0$
Setting $t = 0$, we obtain the second moment:
\(\ds \map {M''_X} 0\) | \(=\) | \(\ds \expect {X^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sigma^2 + \paren {\mu + \sigma^2 0}^2 } \map \exp {\mu 0 + \dfrac 1 2 \sigma^2 0^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sigma^2 + \mu^2 } \exp 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sigma^2 + \mu^2\) | Exponential of Zero |
So:
\(\ds \var X\) | \(=\) | \(\ds \sigma^2 + \mu^2 - \paren {\expect X}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sigma^2 + \mu^2 - \mu^2\) | Expectation of Gaussian Distribution | |||||||||||
\(\ds \) | \(=\) | \(\ds \sigma^2\) |
$\blacksquare$