Variance of Poisson Distribution
Theorem
Let $X$ be a discrete random variable with the Poisson distribution with parameter $\lambda$.
Then the variance of $X$ is given by:
- $\var X = \lambda$
Proof 1
From the definition of Variance as Expectation of Square minus Square of Expectation:
- $\var X = \expect {X^2} - \paren {\expect X}^2$
From Expectation of Function of Discrete Random Variable:
- $\ds \expect {X^2} = \sum_{x \mathop \in \Omega_X} x^2 \, \map \Pr {X = x}$
So:
\(\ds \expect {X^2}\) | \(=\) | \(\ds \sum_{k \mathop \ge 0} {k^2 \dfrac 1 {k!} \lambda^k e^{-\lambda} }\) | Definition of Poisson Distribution | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda e^{-\lambda} \sum_{k \mathop \ge 1} {k \dfrac 1 {\paren {k - 1}!} \lambda^{k - 1} }\) | Note change of limit: term is zero when $k=0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda e^{-\lambda} \paren {\sum_{k \mathop \ge 1} {\paren {k - 1} \dfrac 1 {\paren {k - 1}!} \lambda^{k - 1} } + \sum_{k \mathop \ge 1} {\frac 1 {\paren {k - 1}!} \lambda^{k - 1} } }\) | straightforward algebra | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda e^{-\lambda} \paren {\lambda \sum_{k \mathop \ge 2} {\dfrac 1 {\paren {k - 2}!} \lambda^{k - 2} } + \sum_{k \mathop \ge 1} {\dfrac 1 {\paren {k - 1}!} \lambda^{k - 1} } }\) | Again, note change of limit: term is zero when $k-1=0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda e^{-\lambda} \paren {\lambda \sum_{i \mathop \ge 0} {\dfrac 1 {i!} \lambda^i} + \sum_{j \mathop \ge 0} {\dfrac 1 {j!} \lambda^j} }\) | putting $i = k - 2, j = k - 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda e^{-\lambda} \paren {\lambda e^\lambda + e^\lambda}\) | Taylor Series Expansion for Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \paren {\lambda + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda^2 + \lambda\) |
Then:
\(\ds \var X\) | \(=\) | \(\ds \expect {X^2} - \paren {\expect X}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda^2 + \lambda - \lambda^2\) | Expectation of Poisson Distribution: $\expect X = \lambda$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda\) |
$\blacksquare$
Proof 2
From Variance of Discrete Random Variable from PGF, we have:
- $\var X = \map {\Pi_X} 1 + \mu - \mu^2$
where $\mu = \expect X$ is the expectation of $X$.
From the Probability Generating Function of Poisson Distribution, we have:
- $\map {\Pi_X} s = e^{-\lambda \paren {1 - s} }$
From Expectation of Poisson Distribution, we have:
- $\mu = \lambda$
From Derivatives of PGF of Poisson Distribution, we have:
- $\map {\Pi_X} s = \lambda^2 e^{-\lambda \paren {1 - s} }$
Putting $s = 1$ using the formula $\map {\Pi_X} 1 + \mu - \mu^2$:
- $\var X = \lambda^2 e^{-\lambda \paren {1 - 1} } + \lambda - \lambda^2$
and hence the result.
$\blacksquare$
Proof 3
From Moment Generating Function of Poisson Distribution, the moment generating function of $X$, $M_X$, is given by:
- $\map {M_X} t = e^{\lambda \paren {e^t - 1} }$
From Variance as Expectation of Square minus Square of Expectation, we have:
- $\var X = \expect {X^2} - \paren {\expect X}^2$
From Moment in terms of Moment Generating Function:
- $\expect {X^2} = \map {M_X} 0$
In Expectation of Poisson Distribution, it is shown that:
- $\map {M_X'} t = \lambda e^t e^{\lambda \paren {e^t - 1} }$
Then:
\(\ds \map {M_X} t\) | \(=\) | \(\ds \map {\frac \d {\d t} } {\lambda e^t e^{\lambda \paren {e^t - 1} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \map {\frac \d {\d t} } {e^{\lambda \paren {e^t - 1} + t} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \map {\frac \d {\d t} } {\lambda \paren {e^t - 1} + t} \frac \d {\map \d {\lambda \paren {e^t - 1} + t} } \paren {e^{\lambda \paren {e^t - 1} + t} }\) | Chain Rule for Derivatives | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \paren {\lambda e^t + 1} e^{\lambda \paren {e^t - 1} + t}\) | Derivative of Power, Derivative of Exponential Function |
Setting $t = 0$:
\(\ds \expect {X^2}\) | \(=\) | \(\ds \lambda \paren {\lambda e^0 + 1} e^{\lambda \paren {e^0 - 1} + 0}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \paren {\lambda + 1}\) | Exponential of Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda^2 + \lambda\) |
From Expectation of Poisson Distribution:
- $\expect X = \lambda$
So:
- $\var X = \lambda^2 + \lambda - \lambda^2 = \lambda$
$\blacksquare$
Also see
Sources
- 1986: Geoffrey Grimmett and Dominic Welsh: Probability: An Introduction ... (previous) ... (next): $\S 2.4$: Expectation: Exercise $10$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $13$: Probability distributions
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $15$: Probability distributions