Variance of Sample Mean

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X_1, X_2, \ldots, X_n$ form a random sample from a population with mean $\mu$ and variance $\sigma^2$.

Let:

$\ds \overline X = \frac 1 n \sum_{i \mathop = 1}^n X_i$


Then:

$\var {\overline X} = \dfrac {\sigma^2} n$


Proof

\(\ds \var {\overline X}\) \(=\) \(\ds \var {\frac 1 n \sum_{i \mathop = 1}^n X_i}\)
\(\ds \) \(=\) \(\ds \frac 1 {n^2} \sum_{i \mathop = 1}^n \var {X_i}\) repeated application of Variance of Linear Combination of Random Variables: Corollary
\(\ds \) \(=\) \(\ds \frac 1 {n^2} \sum_{i \mathop = 1}^n \sigma^2\)
\(\ds \) \(=\) \(\ds \frac {\sigma^2 n} {n^2}\) as $\ds \sum_{i \mathop = 1}^n 1 = n$
\(\ds \) \(=\) \(\ds \frac {\sigma^2} n\)

$\blacksquare$