Viète's Formulas/Examples/Monic Polynomial

From ProofWiki
Jump to navigation Jump to search

Example of Use of Viète's Formulas

Let:

$\ds \map P x = x^N + \sum_{k \mathop = 0}^{N - 1} b_k x^k$

be a monic polynomial of degree $N$.


Let $U$ be the set of $N$ roots of equation $\map P x = 0$.


Then:

$b_k = \paren {-1}^{N - k} \map {e_{N - k} } U, \quad 0 \le k \le N - 1$

where $\map {e_m} U$ denotes an elementary symmetric function.


Proof

Let:

$U = \set {x_1, \ldots, x_N}$

Translate Viète's Formulas from notation $a_0$ to $a_N$:

\(\text {(1)}: \quad\) \(\ds a_N\) \(=\) \(\ds 1\)
\(\text {(2)}: \quad\) \(\ds a_i\) \(=\) \(\ds b_i\) for $0 \le i \le N-1$

Let $N-k = j$ define a change of index.

Then $k = N-j$.

Apply the change of index:

\(\ds b_k\) \(=\) \(\ds a_k\) from $(2)$
\(\ds \) \(=\) \(\ds a_{N-j}\) change of index $k = N-j$
\(\ds \) \(=\) \(\ds a_N \paren {-1}^j \map {e_j} U\) Viète's Formulas
\(\ds \) \(=\) \(\ds a_N \paren {-1}^{N - k} \map {e_{N - k} } U\) change of index $j = N - k$
\(\ds \) \(=\) \(\ds \paren {-1}^{N - k} \map {e_{N - k} } U\) $a_N = 1$ by $(1)$

$\blacksquare$