WFFs of PropLog of Length 1

From ProofWiki
Jump to navigation Jump to search


The only WFFs of propositional logic of length $1$ are:


We refer to the rules of formation.

From $\mathbf W: TF$, $\top$ and $\bot$ (both of length 1) are WFFs.

From $\mathbf W: \mathcal P_0$, all elements of $\mathcal P_0$ (all of length 1) are WFFs.

Every other rule of formation of the formal grammar of propositional logic consists of an existing WFF in addition to at least one other primitive symbol.

Hence the result.