Well-Defined Mapping/Examples

From ProofWiki
Jump to navigation Jump to search

Examples of Well-Defined Mappings

Square Function on Congruence Modulo $6$

Let $x \mathrel {C_6} y$ be the equivalence relation defined on the natural numbers as congruence modulo $6$:

$x \mathrel {C_6} y \iff x \equiv y \pmod 6$

defined as:

$\forall x, y \in \N: x \equiv y \pmod 6 \iff \exists k, l, m \in \N, m < 6: 6 k + m = x \text { and } 6 l + m = y$

Let $\eqclass x {C_6}$ denote the equivalence class of $x$ under $C_6$.

Let $\N / {C_6}$ denote the quotient set of $\N$ by $C_6$.


Let us define the mapping $\mathrm {sq}$ on $\N / {C_6}$ as follows:

$\map {\mathrm {sq} } {\eqclass x {C_6} } = m^2$

where $x = 6 k + m$ for some $k, m \in \N$ such that $m < 6$.


Then $\mathrm {sq}$ is a well-defined mapping.


Floor of Half Function on Congruence Modulo $6$

Let $x \mathrel {C_6} y$ be the equivalence relation defined on the natural numbers as congruence modulo $6$:

$x \mathrel {C_6} y \iff x \equiv y \pmod 6$

defined as:

$\forall x, y \in \N: x \equiv y \pmod 6 \iff \exists k, l, m \in \N, m < 6: 6 k + m = x \text { and } 6 l + m = y$

Let $\eqclass x {C_6}$ denote the equivalence class of $x$ under $C_6$.

Let $\N / {C_6}$ denote the quotient set of $\N$ by $C_6$.


Let us define the mapping $\phi$ on $\N / {C_6}$ as follows:

$\map \phi {\eqclass x {C_6} } = \eqclass {\floor {x / 2} } {C_6}$

where $\floor {\, \cdot \,}$ denotes the floor function.


Then $\phi$ is not a well-defined mapping.