Zero Vector is Unique
Jump to navigation
Jump to search
Theorem
Let $\struct {\mathbf V, +, \circ}_{\mathbb F}$ be a vector space over $\mathbb F$, as defined by the vector space axioms.
Then the zero vector in $\mathbf V$ is unique:
- $\exists! \mathbf 0 \in \mathbf V: \forall \mathbf x \in \mathbf V: \mathbf x + \mathbf 0 = \mathbf x$
Proof
Proof of Existence
Follows from the vector space axioms.
$\Box$
Proof of Uniqueness
Let $\mathbf 0$, $\mathbf 0'$ be zero vectors.
Utilizing the vector space axioms:
\(\ds \mathbf 0\) | \(=\) | \(\ds \mathbf 0 + \mathbf 0'\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf 0' + \mathbf 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \mathbf 0'\) |
$\blacksquare$