Kuratowski's Closure-Complement Problem/Exterior

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\R$ be the real number line with the usual (Euclidean) topology.

Let $A \subseteq \R$ be defined as:

\(\ds A\) \(:=\) \(\ds \openint 0 1 \cup \openint 1 2\) Definition of Union of Adjacent Open Intervals
\(\ds \) \(\) \(\, \ds \cup \, \) \(\ds \set 3\) Definition of Singleton
\(\ds \) \(\) \(\, \ds \cup \, \) \(\ds \paren {\Q \cap \openint 4 5}\) Rational Numbers from $4$ to $5$ (not inclusive)


The exterior of $A$ in $\R$ is given by:

\(\ds A^e\) \(=\) \(\ds \openint \gets 0\) Definition of Unbounded Open Real Interval
\(\ds \) \(\) \(\, \ds \cup \, \) \(\ds \openint 2 3 \cup \openint 3 4\) Definition of Union of Adjacent Open Intervals
\(\ds \) \(\) \(\, \ds \cup \, \) \(\ds \openint 5 \to\) Definition of Unbounded Open Real Interval


Kuratowski-Closure-Complement-Theorem-Ext.png


Proof

By definition, the exterior of $A$ in $\R$ can be defined either as:

the complement of the closure of $A$ in $\R$: $A^{- \, \prime}$

or as:

the interior of the complement of $A$ in $\R$: $A^{\prime \, \circ}$


From Kuratowski's Closure-Complement Problem: Closure:

\(\ds A^-\) \(=\) \(\ds \closedint 0 2\) Definition of Closed Real Interval
\(\ds \) \(\) \(\, \ds \cup \, \) \(\ds \set 3\) Definition of Singleton
\(\ds \) \(\) \(\, \ds \cup \, \) \(\ds \closedint 4 5\) Definition of Closed Real Interval


It follows by inspection that:

\(\ds A^e = A^{- \, \prime}\) \(=\) \(\ds \openint \gets 0\) Definition of Unbounded Open Real Interval
\(\ds \) \(\) \(\, \ds \cup \, \) \(\ds \openint 2 3 \cup \openint 3 4\) Definition of Union of Adjacent Open Intervals
\(\ds \) \(\) \(\, \ds \cup \, \) \(\ds \openint 5 \to\) Definition of Unbounded Open Real Interval

$\blacksquare$