User:Leigh.Samphier/Matroids/Set Difference Then Union Equals Union Then Set Difference

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S, A, B$ be sets.

Let $A \subseteq S$.

Let $A \cap B = \O$.


Then:

$\paren{S \setminus A} \cup B = \paren{S \cup B} \setminus A$


Corollary

Let $S, T$ be sets.

Let $A \subseteq S \setminus T$.

Let $B \subseteq T \setminus S$.


Then:

$\paren{S \setminus A} \cup B = \paren{S \cup B} \setminus A$


Proof

We have:

\(\ds \paren{S \cup B} \setminus A\) \(=\) \(\ds \paren {S \setminus A} \cup \paren {B \setminus A}\) Set Difference is Right Distributive over Union
\(\ds \) \(=\) \(\ds \paren {S \setminus A} \cup B\) Set Difference with Disjoint Set

$\blacksquare$