Definition:Closed Set/Real Analysis

From ProofWiki
Jump to: navigation, search

This page is about closed sets in the context of real analysis. For other uses, see Definition:Closed.

Definition

Real Numbers

Let $S \subseteq \R$ be a subset of the set of real numbers.


Then $S$ is closed (in $\R$) if and only if its complement $\R \setminus S$ is an open set.


Real Euclidean Space

Let $n\geq1$ be a natural number.

Let $S \subseteq \R^n$ be a subset.


Then $S$ is closed (in $\R^n$) if and only if its complement $\R^n \setminus S$ is an open set.


Also see