Symbols:LaTeX Commands/ProofWiki Specific
Jump to navigation
Jump to search
$\LaTeX$ Commands
This page contains $\LaTeX$ commands which are specific to $\mathsf{Pr} \infty \mathsf{fWiki}$.
They are listed in alphabetical order of the defined command, including an example of its expected context as relevant.
\(\AA\) | $\quad:\quad$\AA
|
$\qquad$that is: \mathcal A
|
|
\(\Add\) | $\quad:\quad$\Add
|
$\qquad$Addition as a Primitive Recursive Function | |
\(\adj {\mathbf A}\) | $\quad:\quad$\adj {\mathbf A}
|
$\qquad$Adjugate Matrix | |
\(\map \Ai {x}\) | $\quad:\quad$\map \Ai {x}
|
$\qquad$Airy Function of the First Kind | |
\(\am z\) | $\quad:\quad$\am z
|
$\qquad$Amplitude | |
\(\arccot\) | $\quad:\quad$\arccot
|
$\qquad$Arccotangent | |
\(\arccsc\) | $\quad:\quad$\arccsc
|
$\qquad$Arccosecant | |
\(\arcosh\) | $\quad:\quad$\arcosh
|
$\qquad$Area Hyperbolic Cosine | |
\(\Arcosh\) | $\quad:\quad$\Arcosh
|
$\qquad$Complex Area Hyperbolic Cosine | |
\(\arcoth\) | $\quad:\quad$\arcoth
|
$\qquad$Area Hyperbolic Cotangent | |
\(\Arcoth\) | $\quad:\quad$\Arcoth
|
$\qquad$Complex Area Hyperbolic Cotangent | |
\(\arcsch\) | $\quad:\quad$\arcsch
|
$\qquad$Area Hyperbolic Cosecant | |
\(\Arcsch\) | $\quad:\quad$\Arcsch
|
$\qquad$Complex Area Hyperbolic Cosecant | |
\(\arcsec\) | $\quad:\quad$\arcsec
|
$\qquad$Arcsecant | |
\(\arsech\) | $\quad:\quad$\arsech
|
$\qquad$Area Hyperbolic Secant | |
\(\Arsech\) | $\quad:\quad$\Arsech
|
$\qquad$Complex Area Hyperbolic Secant | |
\(\arsinh\) | $\quad:\quad$\arsinh
|
$\qquad$Area Hyperbolic Sine | |
\(\Arsinh\) | $\quad:\quad$\Arsinh
|
$\qquad$Complex Area Hyperbolic Sine | |
\(\artanh\) | $\quad:\quad$\artanh
|
$\qquad$Area Hyperbolic Tangent | |
\(\Artanh\) | $\quad:\quad$\Artanh
|
$\qquad$Complex Area Hyperbolic Tangent | |
\(\Area\) | $\quad:\quad$\Area
|
$\qquad$Area of Plane Figure | |
\(\Arg z\) | $\quad:\quad$\Arg z
|
$\qquad$Principal Argument of Complex Number | |
\(\Aut {S}\) | $\quad:\quad$\Aut {S}
|
$\qquad$Automorphism Group | |
\(\BB\) | $\quad:\quad$\BB
|
$\qquad$that is: \mathcal B
|
|
\(\Bei\) | $\quad:\quad$\Bei
|
$\qquad$Bei Function | |
\(\Ber\) | $\quad:\quad$\Ber
|
$\qquad$Ber Function | |
\(\Bernoulli {p}\) | $\quad:\quad$\Bernoulli {p}
|
$\qquad$Bernoulli Distribution | |
\(\BetaDist {\alpha} {\beta}\) | $\quad:\quad$\BetaDist {\alpha} {\beta}
|
$\qquad$Beta Distribution | |
\(\bigintlimits {\map f s} {s \mathop = 0} {s \mathop = a}\) | $\quad:\quad$\bigintlimits {\map f s} {s \mathop = 0} {s \mathop = a}
|
$\qquad$Limits of Integration | |
\(\bigsize {x}\) | $\quad:\quad$\bigsize {x}
|
$\qquad$Absolute Value | |
\(\bigvalueat {\delta x} {x \mathop = x_j} \) | $\quad:\quad$\bigvalueat {\delta x} {x \mathop = x_j}
|
||
\(\Binomial {n} {p}\) | $\quad:\quad$\Binomial {n} {p}
|
$\qquad$Binomial Distribution | |
\(\braket {a} {b}\) | $\quad:\quad$\braket {a} {b}
|
$\qquad$Dirac Notation | |
\(\bsalpha\) | $\quad:\quad$\bsalpha
|
||
\(\bsbeta\) | $\quad:\quad$\bsbeta
|
||
\(\bschi\) | $\quad:\quad$\bschi
|
||
\(\bsDelta\) | $\quad:\quad$\bsDelta
|
$\qquad$a vector '$\Delta$' | |
\(\bsdelta\) | $\quad:\quad$\bsdelta
|
||
\(\bsepsilon\) | $\quad:\quad$\bsepsilon
|
||
\(\bseta\) | $\quad:\quad$\bseta
|
||
\(\bsgamma\) | $\quad:\quad$\bsgamma
|
||
\(\bsiota\) | $\quad:\quad$\bsiota
|
||
\(\bskappa\) | $\quad:\quad$\bskappa
|
||
\(\bslambda\) | $\quad:\quad$\bslambda
|
||
\(\bsmu\) | $\quad:\quad$\bsmu
|
||
\(\bsnu\) | $\quad:\quad$\bsnu
|
||
\(\bsomega\) | $\quad:\quad$\bsomega
|
||
\(\bsomicron\) | $\quad:\quad$\bsomicron
|
||
\(\bsone\) | $\quad:\quad$\bsone
|
$\qquad$vector of ones | |
\(\bsphi\) | $\quad:\quad$\bsphi
|
||
\(\bspi\) | $\quad:\quad$\bspi
|
||
\(\bspsi\) | $\quad:\quad$\bspsi
|
||
\(\bsrho\) | $\quad:\quad$\bsrho
|
||
\(\bssigma\) | $\quad:\quad$\bssigma
|
||
\(\bst\) | $\quad:\quad$\bst
|
$\qquad$a vector 't' | |
\(\bstau\) | $\quad:\quad$\bstau
|
||
\(\bstheta\) | $\quad:\quad$\bstheta
|
||
\(\bsupsilon\) | $\quad:\quad$\bsupsilon
|
||
\(\bsv\) | $\quad:\quad$\bsv
|
$\qquad$a vector 'v' | |
\(\bsw\) | $\quad:\quad$\bsw
|
$\qquad$a vector 'w' | |
\(\bsx\) | $\quad:\quad$\bsx
|
$\qquad$a vector 'x' | |
\(\bsxi\) | $\quad:\quad$\bsxi
|
||
\(\bsy\) | $\quad:\quad$\bsy
|
$\qquad$a vector 'y' | |
\(\bsz\) | $\quad:\quad$\bsz
|
$\qquad$a vector 'z' | |
\(\bszero\) | $\quad:\quad$\bszero
|
$\qquad$vector of zeros | |
\(\bszeta\) | $\quad:\quad$\bszeta
|
||
\(\map \Card {S}\) | $\quad:\quad$\map \Card {S}
|
$\qquad$Cardinality | |
\(\card {S}\) | $\quad:\quad$\card {S}
|
$\qquad$Cardinality | |
\(\Cauchy {x_0} {\gamma}\) | $\quad:\quad$\Cauchy {x_0} {\gamma}
|
$\qquad$Cauchy Distribution | |
\(\CC\) | $\quad:\quad$\CC
|
$\qquad$that is: \mathcal C
|
|
\(\Cdm {f}\) | $\quad:\quad$\Cdm {f}
|
$\qquad$Codomain of Mapping | |
\(\ceiling {11.98}\) | $\quad:\quad$\ceiling {11.98}
|
$\qquad$Ceiling Function | |
\(30 \cels\) | $\quad:\quad$30 \cels
|
$\qquad$Degrees Celsius | |
\(15 \cents\) | $\quad:\quad$15 \cents
|
$\qquad$Cent | |
\(\Char {R}\) | $\quad:\quad$\Char {R}
|
$\qquad$Characteristic of Ring, etc. | |
\(\Ci\) | $\quad:\quad$\Ci
|
$\qquad$Cosine Integral Function | |
\(\cis \theta\) | $\quad:\quad$\cis \theta
|
$\qquad$$\cos \theta + i \sin \theta$ | |
\(\map \cl {S}\) | $\quad:\quad$\map \cl {S}
|
$\qquad$Closure (Topology) | |
\(\closedint {a} {b}\) | $\quad:\quad$\closedint {a} {b}
|
$\qquad$Closed Interval | |
\(\closedrect {\mathbf a_1} {\mathbf a_2}\) | $\quad:\quad$\closedrect {\mathbf a_1} {\mathbf a_2}
|
$\qquad$Closed Rectangle | |
\(\cmod {z^2}\) | $\quad:\quad$\cmod {z^2}
|
$\qquad$Complex Modulus | |
\(\cn u\) | $\quad:\quad$\cn u
|
$\qquad$Elliptic Function | |
\(\condprob {A} {B}\) | $\quad:\quad$\condprob {A} {B}
|
$\qquad$Conditional Probability | |
\(\conjclass {x}\) | $\quad:\quad$\conjclass {x}
|
$\qquad$Conjugacy Class | |
\(\cont {f}\) | $\quad:\quad$\cont {f}
|
$\qquad$Content of Polynomial | |
\(\ContinuousUniform {a} {b}\) | $\quad:\quad$\ContinuousUniform {a} {b}
|
$\qquad$Continuous Uniform Distribution | |
\(\cosec\) | $\quad:\quad$\cosec
|
$\qquad$Cosecant (alternative form) | |
\(\Cosh\) | $\quad:\quad$\Cosh
|
$\qquad$Hyperbolic Cosine | |
\(\Coth\) | $\quad:\quad$\Coth
|
$\qquad$Hyperbolic Cotangent | |
\(\cov {X, Y}\) | $\quad:\quad$\cov {X, Y}
|
$\qquad$Covariance | |
\(\csch\) | $\quad:\quad$\csch
|
$\qquad$Hyperbolic Cosecant | |
\(\Csch\) | $\quad:\quad$\Csch
|
$\qquad$Hyperbolic Cosecant | |
\(\curl\) | $\quad:\quad$\curl
|
$\qquad$Curl Operator | |
\(\DD\) | $\quad:\quad$\DD
|
$\qquad$that is: \mathcal D
|
|
\(\dfrac {\d x} {\d y}\) | $\quad:\quad$\dfrac {\d x} {\d y}
|
$\qquad$Roman $\d$ for Derivatives | |
\(30 \degrees\) | $\quad:\quad$30 \degrees
|
$\qquad$Degrees of Angle | |
\(\diam\) | $\quad:\quad$\diam
|
$\qquad$Diameter | |
\(\Dic n\) | $\quad:\quad$\Dic n
|
$\qquad$Dicyclic Group | |
\(\DiscreteUniform {n}\) | $\quad:\quad$\DiscreteUniform {n}
|
$\qquad$Discrete Uniform Distribution | |
\(a \divides b\) | $\quad:\quad$a \divides b
|
$\qquad$Divisibility | |
\(\dn u\) | $\quad:\quad$\dn u
|
$\qquad$Elliptic Function | |
\(\Dom {f}\) | $\quad:\quad$\Dom {f}
|
$\qquad$Domain of Mapping | |
\(\dr {a}\) | $\quad:\quad$\dr {a}
|
$\qquad$Digital Root | |
\(\E\) | $\quad:\quad$\E
|
$\qquad$Elementary Charge | |
\(\EE\) | $\quad:\quad$\EE
|
$\qquad$that is: \mathcal E
|
|
\(\Ei\) | $\quad:\quad$\Ei
|
$\qquad$Exponential Integral Function | |
\(\empty\) | $\quad:\quad$\empty
|
$\qquad$Empty Set | |
\(\eqclass {x} {\RR}\) | $\quad:\quad$\eqclass {x} {\RR}
|
$\qquad$Equivalence Class | |
\(\erf\) | $\quad:\quad$\erf
|
$\qquad$Error Function | |
\(\erfc\) | $\quad:\quad$\erfc
|
$\qquad$Complementary Error Function | |
\(\expect {X}\) | $\quad:\quad$\expect {X}
|
$\qquad$Expectation | |
\(\Exponential {\beta}\) | $\quad:\quad$\Exponential {\beta}
|
$\qquad$Exponential Distribution | |
\(\Ext {\gamma}\) | $\quad:\quad$\Ext {\gamma}
|
$\qquad$Exterior | |
\(\F\) | $\quad:\quad$\F
|
$\qquad$False | |
\(30 \fahr\) | $\quad:\quad$30 \fahr
|
$\qquad$Degrees Fahrenheit | |
\(\family {S_i}\) | $\quad:\quad$\family {S_i}
|
$\qquad$Indexed Family | |
\(\FF\) | $\quad:\quad$\FF
|
$\qquad$that is: \mathcal F
|
|
\(\Field {\RR} \) | $\quad:\quad$\Field {\RR}
|
||
\(\Fix {\pi}\) | $\quad:\quad$\Fix {\pi}
|
$\qquad$Set of Fixed Elements | |
\(\floor {11.98}\) | $\quad:\quad$\floor {11.98}
|
$\qquad$Floor Function | |
\(\fractpart {x}\) | $\quad:\quad$\fractpart {x}
|
$\qquad$Fractional Part | |
\(\map \Frob {R}\) | $\quad:\quad$\map \Frob {R}
|
$\qquad$Frobenius Endomorphism | |
\(\Gal {S}\) | $\quad:\quad$\Gal {S}
|
$\qquad$Galois Group | |
\(\Gaussian {\mu} {\sigma^2}\) | $\quad:\quad$\Gaussian {\mu} {\sigma^2}
|
$\qquad$Normal Distribution | |
\(\gen {S}\) | $\quad:\quad$\gen {S}
|
$\qquad$Generator | |
\(\Geometric {p}\) | $\quad:\quad$\Geometric {p}
|
$\qquad$Geometric Distribution | |
\(\GF\) | $\quad:\quad$\GF
|
$\qquad$Galois Field | |
\(\GG\) | $\quad:\quad$\GG
|
$\qquad$that is: \mathcal G
|
|
\(\GL {n, \R}\) | $\quad:\quad$\GL {n, \R}
|
$\qquad$General Linear Group | |
\(\grad {p}\) | $\quad:\quad$\grad {p}
|
$\qquad$Gradient | |
\(\harm {r} {z}\) | $\quad:\quad$\harm {r} {z}
|
$\qquad$General Harmonic Numbers | |
\(\hav \theta\) | $\quad:\quad$\hav \theta
|
$\qquad$Haversine | |
\(\hcf\) | $\quad:\quad$\hcf
|
$\qquad$Highest Common Factor | |
\(\H\) | $\quad:\quad$\H
|
$\qquad$Set of Quaternions | |
\(\HH\) | $\quad:\quad$\HH
|
$\qquad$Hilbert Space | |
\(\hointl {a} {b}\) | $\quad:\quad$\hointl {a} {b}
|
$\qquad$Left Half-Open Interval | |
\(\hointr {a} {b}\) | $\quad:\quad$\hointr {a} {b}
|
$\qquad$Right Half-Open Interval | |
\(\horectl {\mathbf a} {\mathbf b}\) | $\quad:\quad$\horectl {\mathbf a} {\mathbf b}
|
$\qquad$Half-Open Rectangle (on the left) | |
\(\horectr {\mathbf c} {\mathbf d}\) | $\quad:\quad$\horectr {\mathbf c} {\mathbf d}
|
$\qquad$Half-Open Rectangle (on the right) | |
\(\ideal {a}\) | $\quad:\quad$\ideal {a}
|
$\qquad$Ideal of Ring | |
\(\II\) | $\quad:\quad$\II
|
$\qquad$that is: \mathcal I
|
|
\(\map \Im z\) | $\quad:\quad$\map \Im z
|
$\qquad$Imaginary Part | |
\(\Img {f}\) | $\quad:\quad$\Img {f}
|
$\qquad$Image of Mapping | |
\(\index {G} {H}\) | $\quad:\quad$\index {G} {H}
|
$\qquad$Index of Subgroup | |
\(\inj\) | $\quad:\quad$\inj
|
$\qquad$Canonical Injection | |
\(\Inn {S}\) | $\quad:\quad$\Inn {S}
|
$\qquad$Group of Inner Automorphisms | |
\(\innerprod {x} {y}\) | $\quad:\quad$\innerprod {x} {y}
|
$\qquad$Inner Product | |
\(\Int {\gamma}\) | $\quad:\quad$\Int {\gamma}
|
$\qquad$Interior | |
\(\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a}\) | $\quad:\quad$\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a}
|
$\qquad$Limits of Integration | |
\(\inv {f} {x}\) | $\quad:\quad$\inv {f} {x}
|
$\qquad$Inverse Mapping | |
\(\invlaptrans {F}\) | $\quad:\quad$\invlaptrans {F}
|
$\qquad$Inverse Laplace Transform | |
\(\JJ\) | $\quad:\quad$\JJ
|
$\qquad$that is: \mathcal J
|
|
\(\Kei\) | $\quad:\quad$\Kei
|
$\qquad$Kei Function | |
\(\Ker\) | $\quad:\quad$\Ker
|
$\qquad$Ker Function | |
\(\KK\) | $\quad:\quad$\KK
|
$\qquad$that is: \mathcal K
|
|
\(\laptrans {f}\) | $\quad:\quad$\laptrans {f}
|
$\qquad$Laplace Transform | |
\(\lcm \set {x, y, z}\) | $\quad:\quad$\lcm \set {x, y, z}
|
$\qquad$Lowest Common Multiple | |
\(\leadstoandfrom\) | $\quad:\quad$\leadstoandfrom
|
||
\(\leftset {a, b, c}\) | $\quad:\quad$\leftset {a, b, c}
|
$\qquad$Conventional set notation (left only) | |
\(\leftparen {a + b + c}\) | $\quad:\quad$\leftparen {a + b + c}
|
$\qquad$Parenthesis (left only) | |
\(\map \len {AB}\) | $\quad:\quad$\map \len {AB}
|
$\qquad$Length Function: various | |
\(\Li\) | $\quad:\quad$\Li
|
$\qquad$Eulerian Logarithmic Integral | |
\(\li\) | $\quad:\quad$\li
|
$\qquad$Logarithmic Integral | |
\(\LL\) | $\quad:\quad$\LL
|
$\qquad$that is: \mathcal L
|
|
\(\Ln\) | $\quad:\quad$\Ln
|
$\qquad$Principal Branch of Complex Natural Logarithm | |
\(\Log\) | $\quad:\quad$\Log
|
$\qquad$Principal Branch of Complex Natural Logarithm | |
\(\loweradjoint {\mathbf J}\) | $\quad:\quad$\loweradjoint {\mathbf J}
|
$\qquad$Galois Connections | |
\(\map {f} {x}\) | $\quad:\quad$\map {f} {x}
|
$\qquad$Mapping or Function | |
\(\meta {metasymbol}\) | $\quad:\quad$\meta {metasymbol}
|
$\qquad$Metasymbol | |
\(27 \minutes\) | $\quad:\quad$27 \minutes
|
$\qquad$Minutes of Angle or Minutes of Time | |
\(\MM\) | $\quad:\quad$\MM
|
$\qquad$that is: \mathcal M
|
|
\(\Mult\) | $\quad:\quad$\Mult
|
$\qquad$Multiplication as a Primitive Recursive Function | |
\(\multiset {a, b, c}\) | $\quad:\quad$\multiset {a, b, c}
|
$\qquad$Multiset | |
\(\map \nec P\) | $\quad:\quad$\map \nec P
|
$\qquad$it is necessary that $P$ | |
\(\NegativeBinomial {n} {p}\) | $\quad:\quad$\NegativeBinomial {n} {p}
|
$\qquad$Negative Binomial Distribution | |
\(\Nil {R}\) | $\quad:\quad$\Nil {R}
|
$\qquad$Nilradical of Ring | |
\(\nint {11.98}\) | $\quad:\quad$\nint {11.98}
|
$\qquad$Nearest Integer Function | |
\(\NN\) | $\quad:\quad$\NN
|
$\qquad$that is: \mathcal N
|
|
\(\norm {z^2}\) | $\quad:\quad$\norm {z^2}
|
$\qquad$Norm | |
\(\O\) | $\quad:\quad$\O
|
$\qquad$Empty Set | |
\(\OO\) | $\quad:\quad$\OO
|
$\qquad$that is: \mathcal O
|
|
\(\oo\) | $\quad:\quad$\oo
|
$\qquad$that is: \mathcal o
|
|
\(\oldpence\) | $\quad:\quad$\oldpence
|
$\qquad$old pence | |
\(\On\) | $\quad:\quad$\On
|
$\qquad$Class of All Ordinals | |
\(\openint {a} {b}\) | $\quad:\quad$\openint {a} {b}
|
$\qquad$Open Interval | |
\(\openrect {\mathbf a_1} {\mathbf a_2}\) | $\quad:\quad$\openrect {\mathbf a_1} {\mathbf a_2}
|
$\qquad$Open Rectangle | |
\(\Orb S\) | $\quad:\quad$\Orb S
|
$\qquad$Orbit | |
\(\Ord {S}\) | $\quad:\quad$\Ord {S}
|
$\qquad$$S$ is an Ordinal | |
\(\order {G}\) | $\quad:\quad$\order {G}
|
$\qquad$Order of Structure, and so on | |
\(\ot\) | $\quad:\quad$\ot
|
$\qquad$Order Type | |
\(\Out {G}\) | $\quad:\quad$\Out {G}
|
$\qquad$Group of Outer Automorphisms | |
\(\paren {a + b + c}\) | $\quad:\quad$\paren {a + b + c}
|
$\qquad$Parenthesis | |
\(\ph z\) | $\quad:\quad$\ph z
|
$\qquad$Phase | |
\(\Poisson {\lambda}\) | $\quad:\quad$\Poisson {\lambda}
|
$\qquad$Poisson Distribution | |
\(\polar {r, \theta}\) | $\quad:\quad$\polar {r, \theta}
|
$\qquad$Polar Form of Complex Number | |
\(\map \pos P\) | $\quad:\quad$\map \pos P
|
$\qquad$it is possible that $P$ | |
\(\pounds\) | $\quad:\quad$\pounds
|
$\qquad$Pound Sterling | |
\(\powerset {S}\) | $\quad:\quad$\powerset {S}
|
$\qquad$Power Set | |
\(\PP\) | $\quad:\quad$\PP
|
$\qquad$that is: \mathcal P
|
|
\(\map {\pr_j} {F}\) | $\quad:\quad$\map {\pr_j} {F}
|
$\qquad$Projection | |
\(\Preimg {f}\) | $\quad:\quad$\Preimg {f}
|
$\qquad$Preimage of Mapping | |
\(\map {\proj_\mathbf v} {\mathbf u}\) | $\quad:\quad$\map {\proj_\mathbf v} {\mathbf u}
|
$\qquad$Vector Projection | |
\(\PV\) | $\quad:\quad$\PV
|
$\qquad$Cauchy Principal Value | |
\(\QQ\) | $\quad:\quad$\QQ
|
$\qquad$that is: \mathcal Q
|
|
\(\radians\) | $\quad:\quad$\radians
|
$\qquad$Radian | |
\(\Rad\) | $\quad:\quad$\Rad
|
$\qquad$Radical of Ideal of Ring | |
\(\ds \int \map f x \rd x\) | $\quad:\quad$\ds \int \map f x \rd x
|
$\qquad$Roman $\d$ for use in Integrals | |
\(\rD\) | $\quad:\quad$\rD
|
$\qquad$Differential Operator | |
\(y \rdelta x\) | $\quad:\quad$y \rdelta x
|
$\qquad$$\delta$ operator for use in sums | |
\(30 \rankine\) | $\quad:\quad$30 \rankine
|
$\qquad$Degrees Rankine | |
\(\map \Re z\) | $\quad:\quad$\map \Re z
|
$\qquad$Real Part | |
\(\relcomp {S} {A}\) | $\quad:\quad$\relcomp {S} {A}
|
$\qquad$Relative Complement | |
\(\rem\) | $\quad:\quad$\rem
|
$\qquad$Remainder | |
\(\Res {f} {z_0}\) | $\quad:\quad$\Res {f} {z_0}
|
$\qquad$Residue | |
\(\rightparen {a + b + c}\) | $\quad:\quad$\rightparen {a + b + c}
|
$\qquad$Parenthesis (right only) | |
\(\rightset {a, b, c}\) | $\quad:\quad$\rightset {a, b, c}
|
$\qquad$Conventional set notation (right only) | |
\(\Rng {f}\) | $\quad:\quad$\Rng {f}
|
$\qquad$Range of Mapping | |
\(\RR\) | $\quad:\quad$\RR
|
$\qquad$that is: \mathcal R
|
|
\(\sech\) | $\quad:\quad$\sech
|
$\qquad$Hyperbolic Secant | |
\(\Sech\) | $\quad:\quad$\Sech
|
$\qquad$Hyperbolic Secant | |
\(53 \seconds\) | $\quad:\quad$53 \seconds
|
$\qquad$Seconds of Angle or Seconds of Time | |
\(\sequence {a_n}\) | $\quad:\quad$\sequence {a_n}
|
$\qquad$Sequence | |
\(\set {a, b, c}\) | $\quad:\quad$\set {a, b, c}
|
$\qquad$Conventional set notation | |
\(\ShiftedGeometric {p}\) | $\quad:\quad$\ShiftedGeometric {p}
|
$\qquad$Shifted Geometric Distribution | |
\(\shillings\) | $\quad:\quad$\shillings
|
$\qquad$shillings | |
\(\Si\) | $\quad:\quad$\Si
|
$\qquad$Sine Integral Function | |
\(\Sinh\) | $\quad:\quad$\Sinh
|
$\qquad$Hyperbolic Sine | |
\(\size {x}\) | $\quad:\quad$\size {x}
|
$\qquad$Absolute Value, and so on | |
\(\SL {n, \R}\) | $\quad:\quad$\SL {n, \R}
|
$\qquad$Special Linear Group | |
\(\sn u\) | $\quad:\quad$\sn u
|
$\qquad$Elliptic Function | |
\(\span\) | $\quad:\quad$\span
|
$\qquad$Linear Span | |
\(\Spec {R}\) | $\quad:\quad$\Spec {R}
|
$\qquad$Spectrum of Ring | |
\(\sqbrk {a} \) | $\quad:\quad$\sqbrk {a}
|
||
\(\SS\) | $\quad:\quad$\SS
|
$\qquad$that is: \mathcal S
|
|
\(\Stab x\) | $\quad:\quad$\Stab x
|
$\qquad$Stabilizer | |
\(\stratgame {N} {A_i} {\succsim_i}\) | $\quad:\quad$\stratgame {N} {A_i} {\succsim_i}
|
$\qquad$Strategic Game | |
\(\struct {G, \circ}\) | $\quad:\quad$\struct {G, \circ}
|
$\qquad$Algebraic Structure | |
\(\StudentT {k}\) | $\quad:\quad$\StudentT {k}
|
$\qquad$Student's t-Distribution | |
\(\SU {n}\) | $\quad:\quad$\SU {n}
|
$\qquad$Unimodular Unitary Group | |
\(\Succ\) | $\quad:\quad$\Succ
|
$\qquad$Successor Function | |
\(\supp\) | $\quad:\quad$\supp
|
$\qquad$Support | |
\(\Syl {p} {N}\) | $\quad:\quad$\Syl {p} {N}
|
$\qquad$Sylow $p$-Subgroup | |
\(\symdif\) | $\quad:\quad$\symdif
|
$\qquad$Symmetric Difference | |
\(\T\) | $\quad:\quad$\T
|
$\qquad$True | |
\(\Tanh\) | $\quad:\quad$\Tanh
|
$\qquad$Hyperbolic Tangent | |
\(\tr\) | $\quad:\quad$\tr
|
$\qquad$Trace | |
\(\TT\) | $\quad:\quad$\TT
|
$\qquad$that is: \mathcal T
|
|
\(\tuple {a, b, c}\) | $\quad:\quad$\tuple {a, b, c}
|
$\qquad$Ordered Tuple | |
\(\upperadjoint {\mathbf J}\) | $\quad:\quad$\upperadjoint {\mathbf J}
|
$\qquad$Galois Connections | |
\(\U\) | $\quad:\quad$\U
|
$\qquad$Undetermined | |
\(\UU\) | $\quad:\quad$\UU
|
$\qquad$that is: \mathcal U
|
|
\(\valueat {\dfrac {\delta y} {\delta x} } {x \mathop = \xi} \) | $\quad:\quad$\valueat {\dfrac {\delta y} {\delta x} } {x \mathop = \xi}
|
||
\(\var {X}\) | $\quad:\quad$\var {X}
|
$\qquad$Variance | |
\(\vers \theta\) | $\quad:\quad$\vers \theta
|
$\qquad$Versed Sine | |
\(\VV\) | $\quad:\quad$\VV
|
$\qquad$that is: \mathcal V
|
|
\(\weakconv\) | $\quad:\quad$\weakconv
|
$\qquad$Weak Convergence | |
\(\weakstarconv\) | $\quad:\quad$\weakstarconv
|
$\qquad$Weak-$*$ Convergence | |
\(\WW\) | $\quad:\quad$\WW
|
$\qquad$that is: \mathcal W
|
|
\(\XX\) | $\quad:\quad$\XX
|
$\qquad$that is: \mathcal X
|
|
\(\YY\) | $\quad:\quad$\YY
|
$\qquad$that is: \mathcal Y
|
|
\(\ZZ\) | $\quad:\quad$\ZZ
|
$\qquad$that is: \mathcal Z
|