Symbols:LaTeX Commands/ProofWiki Specific

From ProofWiki
Jump to: navigation, search

$\LaTeX$ Commands

This page contains $\LaTeX$ commands which are specific to $\mathsf{Pr} \infty \mathsf{fWiki}$.

They are listed in alphabetical order of the defined command, including an example of its expected context as relevant.


\(\Add\) $\quad:\quad$\Add $\qquad$Addition as a Primitive Recursive Function‎
\(\adj {\mathbf A}\) $\quad:\quad$\adj {\mathbf A} $\qquad$Adjugate Matrix
\(\arccot\) $\quad:\quad$\arccot $\qquad$Arccotangent
\(\arccsc\) $\quad:\quad$\arccsc $\qquad$Arccosecant
\(\arcsec\) $\quad:\quad$\arcsec $\qquad$Arcsecant
\(\Area\) $\quad:\quad$\Area $\qquad$Area of Plane Figure
\(\Arg z\) $\quad:\quad$\Arg z $\qquad$Principal Argument of Complex Number
\(\Aut {S}\) $\quad:\quad$\Aut {S} $\qquad$Automorphism Group
\(\Bernoulli {p}\) $\quad:\quad$\Bernoulli {p} $\qquad$Bernoulli Distribution
\(\BetaDist {\alpha} {\beta}\) $\quad:\quad$\BetaDist {\alpha} {\beta} $\qquad$Beta Distribution
\(\bigintlimits {\map f s} {s \mathop = 0} {s \mathop = a}\) $\quad:\quad$\bigintlimits {\map f s} {s \mathop = 0} {s \mathop = a} $\qquad$Limits of Integration
\(\Binomial {n} {p}\) $\quad:\quad$\Binomial {n} {p} $\qquad$Binomial Distribution
\(\bsDelta\) $\quad:\quad$\bsDelta $\qquad$a vector '$\Delta$'
\(\bsone\) $\quad:\quad$\bsone $\qquad$vector of ones
\(\bst\) $\quad:\quad$\bst $\qquad$a vector 't'
\(\bsv\) $\quad:\quad$\bsv $\qquad$a vector 'v'
\(\bsw\) $\quad:\quad$\bsw $\qquad$a vector 'w'
\(\bsx\) $\quad:\quad$\bsx $\qquad$a vector 'x'
\(\bsy\) $\quad:\quad$\bsy $\qquad$a vector 'y'
\(\bsz\) $\quad:\quad$\bsz $\qquad$a vector 'z'
\(\bszero\) $\quad:\quad$\bszero $\qquad$vector of zeros
\(\map \Card {S}\) $\quad:\quad$\map \Card {S} $\qquad$Cardinality
\(\card {S}\) $\quad:\quad$\card {S} $\qquad$Cardinality
\(\Cauchy {x_0} {\gamma}\) $\quad:\quad$\Cauchy {x_0} {\gamma} $\qquad$Cauchy Distribution
\(\Cdm {f}\) $\quad:\quad$\Cdm {f} $\qquad$Codomain of Mapping
\(\ceiling {11.98}\) $\quad:\quad$\ceiling {11.98} $\qquad$Ceiling Function
\(30 \cels\) $\quad:\quad$30 \cels $\qquad$Degrees Celsius
\(\Char {R}\) $\quad:\quad$\Char {R} $\qquad$Characteristic of Ring, etc.
\(\Ci\) $\quad:\quad$\Ci $\qquad$Cosine Integral Function
\(\cis \theta\) $\quad:\quad$\cis \theta $\qquad$$\cos \theta + i \sin \theta$
\(\cl S\) $\quad:\quad$\cl S $\qquad$Closure (Topology)
\(\closedint {a} {b}\) $\quad:\quad$\closedint {a} {b} $\qquad$Closed Interval
\(\cmod {z^2}\) $\quad:\quad$\cmod {z^2} $\qquad$Complex Modulus
\(\conjclass {x}\) $\quad:\quad$\conjclass {x} $\qquad$Conjugacy Class
\(\cont {f}\) $\quad:\quad$\cont {f} $\qquad$Content of Polynomial
\(\ContinuousUniform {a} {v}\) $\quad:\quad$\ContinuousUniform {a} {v} $\qquad$Continuous Uniform Distribution
\(\cosec\) $\quad:\quad$\cosec $\qquad$Cosecant (alternative form)
\(\Cosh\) $\quad:\quad$\Cosh $\qquad$Hyperbolic Cosine
\(\Coth\) $\quad:\quad$\Coth $\qquad$Hyperbolic Cotangent
\(\csch\) $\quad:\quad$\csch $\qquad$Hyperbolic Cosecant
\(\Csch\) $\quad:\quad$\Csch $\qquad$Hyperbolic Cosecant
\(\dfrac {\d x} {\d y}\) $\quad:\quad$\dfrac {\d x} {\d y} $\qquad$Roman $\d$ for Derivatives
\(30 \degrees\) $\quad:\quad$30 \degrees $\qquad$Degrees of Arc
\(\Dic n\) $\quad:\quad$\Dic n $\qquad$Dicyclic Group
\(\DiscreteUniform {n}\) $\quad:\quad$\DiscreteUniform {n} $\qquad$Discrete Uniform Distribution
\(a \divides b\) $\quad:\quad$a \divides b $\qquad$Divisibility
\(\Dom {f}\) $\quad:\quad$\Dom {f} $\qquad$Domain of Mapping
\(\dr {a}\) $\quad:\quad$\dr {a} $\qquad$Digital Root
\(\E\) $\quad:\quad$\E $\qquad$Euler's number
\(\Ei\) $\quad:\quad$\Ei $\qquad$Exponential Integral Function
\(\empty\) $\quad:\quad$\empty $\qquad$Empty Set
\(\eqclass {x} {\mathcal R}\) $\quad:\quad$\eqclass {x} {\mathcal R} $\qquad$Equivalence Class
\(\erf\) $\quad:\quad$\erf $\qquad$Error Function
\(\erfc\) $\quad:\quad$\erfc $\qquad$Complementary Error Function
\(\expect {X}\) $\quad:\quad$\expect {X} $\qquad$Expectation
\(\Exponential {\beta}\) $\quad:\quad$\Exponential {\beta} $\qquad$Exponential Distribution
\(\F\) $\quad:\quad$\F\FF $\qquad$Galois Field
\(30 \fahr\) $\quad:\quad$30 \fahr $\qquad$Degrees Fahrenheit
\(\family {S_i}\) $\quad:\quad$\family {S_i} $\qquad$Indexed Family
\(\Fix {\pi}\) $\quad:\quad$\Fix {\pi} $\qquad$Set of Fixed Elements
\(\floor {11.98}\) $\quad:\quad$\floor {11.98} $\qquad$Floor Function
\(\fractpart {x}\) $\quad:\quad$\fractpart {x} $\qquad$Fractional Part
\(\Frob {R}\) $\quad:\quad$\Frob {R} $\qquad$Frobenius Endomorphism
\(\Gal {S}\) $\quad:\quad$\Gal {S} $\qquad$Galois Group
\(\Gaussian {\mu} {\sigma^2}\) $\quad:\quad$\Gaussian {\mu} {\sigma^2} $\qquad$Gaussian Distribution
\(\gen {S}\) $\quad:\quad$\gen {S} $\qquad$Generator
\(\Geometric {p}\) $\quad:\quad$\Geometric {p} $\qquad$Geometric Distribution
\(\GL {n, \R}\) $\quad:\quad$\GL {n, \R} $\qquad$General Linear Group
\(\grad {p}\) $\quad:\quad$\grad {p} $\qquad$Gradient
\(\hcf\) $\quad:\quad$\hcf $\qquad$Highest Common Factor
\(\H\) $\quad:\quad$\H $\qquad$Set of Quaternions
\(\HH\) $\quad:\quad$\HH $\qquad$Hilbert Space
\(\hointl {a} {b}\) $\quad:\quad$\hointl {a} {b} $\qquad$Left Half-Open Interval
\(\hointr {a} {b}\) $\quad:\quad$\hointr {a} {b} $\qquad$Right Half-Open Interval
\(\ideal {a}\) $\quad:\quad$\ideal {a} $\qquad$Ideal of Ring
\(\map \Im z\) $\quad:\quad$\map \Im z $\qquad$Imaginary Part
\(\Img {f}\) $\quad:\quad$\Img {f} $\qquad$Image of Mapping
\(\index {G} {H}\) $\quad:\quad$\index {G} {H} $\qquad$Index of Subgroup
\(\inj\) $\quad:\quad$\inj $\qquad$Canonical Injection
\(\Inn {S}\) $\quad:\quad$\Inn {S} $\qquad$Group of Inner Automorphisms
\(\innerprod {x} {y}\) $\quad:\quad$\innerprod {x} {y} $\qquad$Inner Product
\(\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a}\) $\quad:\quad$\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a} $\qquad$Limits of Integration
\(\invlaptrans {F}\) $\quad:\quad$\invlaptrans {F} $\qquad$Inverse Laplace Transform
\(\laptrans {f}\) $\quad:\quad$\laptrans {f} $\qquad$Laplace Transform
\(\lcm \set {x, y, z}\) $\quad:\quad$\lcm \set {x, y, z} $\qquad$Lowest Common Multiple
\(\leadstoandfrom\) $\quad:\quad$\leadstoandfrom
\(\len {AB}\) $\quad:\quad$\len {AB} $\qquad$Length Function: various
\(\Ln\) $\quad:\quad$\Ln $\qquad$Principal Branch of Complex Natural Logarithm
\(\Log\) $\quad:\quad$\Log $\qquad$Principal Branch of Complex Natural Logarithm
\(\map {f} {x}\) $\quad:\quad$\map {f} {x} $\qquad$Mapping or Function
\(\Mult\) $\quad:\quad$\Mult $\qquad$Multiplication as a Primitive Recursive Function‎
\(\NegativeBinomial {n} {p}\) $\quad:\quad$\NegativeBinomial {n} {p} $\qquad$Negative Binomial Distribution
\(\Nil {R}\) $\quad:\quad$\Nil {R} $\qquad$Nilradical of Ring
\(\norm {z^2}\) $\quad:\quad$\norm {z^2} $\qquad$Norm
\(\O\) $\quad:\quad$\O $\qquad$Empty Set
\(\On\) $\quad:\quad$\On $\qquad$Ordinal Class
\(\openint {a} {b}\) $\quad:\quad$\openint {a} {b} $\qquad$Open Interval
\(\Orb S\) $\quad:\quad$\Orb S $\qquad$Orbit
\(\order {G}\) $\quad:\quad$\order {G} $\qquad$Order of Structure, and so on
\(\Out {G}\) $\quad:\quad$\Out {G} $\qquad$Group of Outer Automorphisms
\(\paren {a + b + c}\) $\quad:\quad$\paren {a + b + c} $\qquad$Parenthesis
\(\Poisson {\lambda}\) $\quad:\quad$\Poisson {\lambda} $\qquad$Poisson Distribution
\(\polar {r, \theta}\) $\quad:\quad$\polar {r, \theta} $\qquad$Polar Form of Complex Number
\(\powerset {S}\) $\quad:\quad$\powerset {S} $\qquad$Power Set
\(\Preimg {f}\) $\quad:\quad$\Preimg {f} $\qquad$Preimage of Mapping
\(\pr_j \paren {F}\) $\quad:\quad$\pr_j \paren {F} $\qquad$Projection
\(\PV\) $\quad:\quad$\PV $\qquad$Cauchy Principal Value
\(\radians\) $\quad:\quad$\radians $\qquad$Radian
\(\displaystyle \int \map f x \rd x\) $\quad:\quad$\displaystyle \int \map f x \rd x $\qquad$Roman $\d$ for use in Integrals
\(\rD\) $\quad:\quad$\rD $\qquad$Differential Operator
\(y \rdelta x\) $\quad:\quad$y \rdelta x $\qquad$$\delta$ operator for use in sums
\(\map \Re z\) $\quad:\quad$\map \Re z $\qquad$Real Part
\(\relcomp {S} {A}\) $\quad:\quad$\relcomp {S} {A} $\qquad$Relative Complement
\(\rem\) $\quad:\quad$\rem $\qquad$Remainder
\(\Res {f} {z_0}\) $\quad:\quad$\Res {f} {z_0} $\qquad$Residue
\(\Rng {f}\) $\quad:\quad$\Rng {f} $\qquad$Range of Mapping
\(\sech\) $\quad:\quad$\sech $\qquad$Hyperbolic Secant
\(\Sech\) $\quad:\quad$\Sech $\qquad$Hyperbolic Secant
\(\sequence {a_n}\) $\quad:\quad$\sequence {a_n} $\qquad$Sequence
\(\set {a, b, c}\) $\quad:\quad$\set {a, b, c} $\qquad$Conventional set notation
\(\ShiftedGeometric {p}\) $\quad:\quad$\ShiftedGeometric {p} $\qquad$Shifted Geometric Distribution
\(\Si\) $\quad:\quad$\Si $\qquad$Sine Integral Function
\(\Sinh\) $\quad:\quad$\Sinh $\qquad$Hyperbolic Sine
\(\size {x}\) $\quad:\quad$\size {x} $\qquad$Absolute Value, and so on
\(\SL {n, \R}\) $\quad:\quad$\SL {n, \R} $\qquad$Special Linear Group
\(\Spec {R}\) $\quad:\quad$\Spec {R} $\qquad$Spectrum of Ring
\(\sqbrk {a} \) $\quad:\quad$\sqbrk {a}
\(\Stab x\) $\quad:\quad$\Stab x $\qquad$Stabilizer
\(\struct {G, \circ}\) $\quad:\quad$\struct {G, \circ} $\qquad$Algebraic Structure
\(\StudentT {k}\) $\quad:\quad$\StudentT {k} $\qquad$Student's t-Distribution
\(\Succ\) $\quad:\quad$\Succ $\qquad$Successor Function
\(\Syl {p} {N}\) $\quad:\quad$\Syl {p} {N} $\qquad$Sylow $p$-Subgroup
\(\Tanh\) $\quad:\quad$\Tanh $\qquad$Hyperbolic Tangent
\(\tr\) $\quad:\quad$\tr $\qquad$Trace
\(\tuple {a, b, c}\) $\quad:\quad$\tuple {a, b, c} $\qquad$Ordered Tuple
\(\var {X}\) $\quad:\quad$\var {X} $\qquad$Variance