# Welcome to $\mathsf{Pr} \infty \mathsf{fWiki}$ ProofWiki is an online compendium of mathematical proofs! Our goal is the collection, collaboration and classification of mathematical proofs. If you are interested in helping create an online resource for math proofs feel free to register for an account. Thanks and enjoy! If you have any questions, comments, or suggestions please post on the discussion page, or contact one of the administrators. Also, feel free to take a look at the frequently asked questions because you may not be the first with your idea. To see what's currently happening in the community, visit the community portal.
20,825 Proofs 16,600 Definitions Help

# Featured Proof

## Theorem

The total length of the arcs of a nephroid constructed around a stator of radius $a$ is given by:

$\LL = 12 a$

## Proof

Let a nephroid $H$ be embedded in a cartesian plane with its center at the origin and its cusps positioned at $\tuple {\pm a, 0}$. We have that $\LL$ is $2$ times the length of one arc of the nephroid.

$\ds \LL = 2 \int_{\theta \mathop = 0}^{\theta \mathop = \pi} \sqrt {\paren {\frac {\d x} {\d \theta} }^2 + \paren {\frac {\d y} {\d \theta} }^2} \rd \theta$

where, from Equation of Nephroid:

$\begin{cases} x & = 3 b \cos \theta - b \cos 3 \theta \\ y & = 3 b \sin \theta - b \sin 3 \theta \end{cases}$

We have:

 $\displaystyle \frac {\d x} {\d \theta}$ $=$ $\displaystyle -3 b \sin \theta + 3 b \sin 3 \theta$ $\displaystyle \frac {\d y} {\d \theta}$ $=$ $\displaystyle 3 b \cos \theta - 3 b \cos 3 \theta$

Thus:

 $\displaystyle$  $\displaystyle \paren {\frac {\d x} {\d \theta} }^2 + \paren {\frac {\d y} {\d \theta} }^2$ $\displaystyle$ $=$ $\displaystyle \paren {-3 b \sin \theta + 3 b \sin 3 \theta}^2 + \paren {3 b \cos \theta - 3 b \cos 3 \theta}^2$ $\displaystyle$ $=$ $\displaystyle 9 b^2 \paren {\paren {-\sin \theta + \sin 3 \theta}^2 + \paren {\cos \theta - \cos 3 \theta}^2}$ $\displaystyle$ $=$ $\displaystyle 9 b^2 \paren {\sin^2 \theta - 2 \sin \theta \sin 3 \theta + \sin^2 3 \theta + \cos^2 \theta - 2 \cos \theta \cos 3 \theta + \cos^2 3 \theta}$ Square of Difference $\displaystyle$ $=$ $\displaystyle 9 b^2 \paren {2 - 2 \sin \theta \sin 3 \theta - 2 \cos \theta \cos 3 \theta}$ Sum of Squares of Sine and Cosine $\displaystyle$ $=$ $\displaystyle 18 b^2 \paren {1 - \paren {\sin \theta \sin 3 \theta + \cos \theta \cos 3 \theta} }$ $\displaystyle$ $=$ $\displaystyle 18 b^2 \paren {1 - \cos 2 \theta}$ Cosine of Difference $\displaystyle$ $=$ $\displaystyle 18 b^2 \paren {2 \sin^2 \theta}$ Square of Sine $\displaystyle$ $=$ $\displaystyle 36 b^2 \sin^2 \theta$ simplifying

Thus:

$\sqrt {\paren {\dfrac {\d x} {\d \theta} }^2 + \paren {\dfrac {\d y} {\d \theta} }^2} = 6 b \sin \theta$

So:

 $\displaystyle \LL$ $=$ $\displaystyle 2 \int_0^\pi 6 b \sin \theta \rd \theta$ $\displaystyle$ $=$ $\displaystyle 12 b \int_0^\pi \sin \theta \rd \theta$ $\displaystyle$ $=$ $\displaystyle 12 b \bigintlimits {-\cos \theta} 0 \pi$ $\displaystyle$ $=$ $\displaystyle 12 b \paren {-\cos \pi - \paren {-\cos 0} }$ $\displaystyle$ $=$ $\displaystyle 12 b \paren {-\paren {-1} - \paren {-1} }$ $\displaystyle$ $=$ $\displaystyle 24 b$ $\displaystyle$ $=$ $\displaystyle 12 a$

$\blacksquare$