Definition:Inverse Hyperbolic Cosecant/Complex/Principal Branch
< Definition:Inverse Hyperbolic Cosecant | Complex(Redirected from Definition:Complex Area Hyperbolic Cosecant)
Jump to navigation
Jump to search
Definition
The principal branch of the complex inverse hyperbolic cosecant function is defined as:
- $\forall z \in \C_{\ne 0}: \map \Arcsch z := \map \Ln {\dfrac {1 + \sqrt {z^2 + 1} } z}$
where:
- $\Ln$ denotes the principal branch of the complex natural logarithm
- $\sqrt {z^2 + 1}$ denotes the principal square root of $z^2 + 1$.
Also see
- Definition:Complex Area Hyperbolic Sine
- Definition:Complex Area Hyperbolic Cosine
- Definition:Complex Area Hyperbolic Tangent
- Definition:Complex Area Hyperbolic Cotangent
- Definition:Complex Area Hyperbolic Secant
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $8$