Definition:Open Set/Real Analysis/Real Euclidean Space
< Definition:Open Set | Real Analysis(Redirected from Definition:Open Set of Real Euclidean Space)
Jump to navigation
Jump to search
Definition
Let $n \ge 1$ be a natural number.
Let $U \subseteq \R^n$ be a subset.
Then $U$ is open (in $\R^n$) if and only if:
- $\forall x \in U : \exists R \in \R_{>0}: \map B {x, R} \subset U$
where $\map B {x, R}$ denotes the open Euclidean ball of radius $R$ centered at $x$.