Divisor Sum of Square-Free Integer/Examples/70

From ProofWiki
Jump to navigation Jump to search

Example of Divisor Sum of Square-Free Integer

$\map {\sigma_1} {70} = 144$

where $\sigma_1$ denotes the divisor sum.


Proof 1

From Divisor Sum of Integer:

$\ds \map {\sigma_1} n = \prod_{1 \mathop \le i \mathop \le r} \frac {p_i^{k_i + 1} - 1} {p_i - 1}$

where $n = \ds \prod_{1 \mathop \le i \mathop \le r} p_i^{k_i}$ denotes the prime decomposition of $n$.


We have that:

$70 = 2 \times 5 \times 7$

Hence:

\(\ds \map {\sigma_1} {70}\) \(=\) \(\ds \frac {2^2 - 1} {2 - 1} \times \frac {5^2 - 1} {5 - 1} \times \frac {7^2 - 1} {7 - 1}\)
\(\ds \) \(=\) \(\ds \frac 3 1 \times \frac {24} 4 \times \frac {48} {6}\)
\(\ds \) \(=\) \(\ds 3 \times 6 \times 8\)
\(\ds \) \(=\) \(\ds 3 \times \paren {3 \times 2} \times 2^3\)
\(\ds \) \(=\) \(\ds 3^2 \times 2^4\)
\(\ds \) \(=\) \(\ds \paren {2^2 \times 3}^2\)
\(\ds \) \(=\) \(\ds 12^2\)
\(\ds \) \(=\) \(\ds 144\)

$\blacksquare$


Proof 2

We have that:

$70 = 2 \times 5 \times 7$


Hence:

\(\ds \map {\sigma_1} {70}\) \(=\) \(\ds \paren {2 + 1} \paren {5 + 1} \paren {7 + 1}\) Divisor Sum of Square-Free Integer
\(\ds \) \(=\) \(\ds 3 \times 6 \times 8\)
\(\ds \) \(=\) \(\ds 3 \times \paren {3 \times 2} \times 2^3\)
\(\ds \) \(=\) \(\ds 3^2 \times 2^4\)
\(\ds \) \(=\) \(\ds \paren {2^2 \times 3}^2\)
\(\ds \) \(=\) \(\ds 12^2\)
\(\ds \) \(=\) \(\ds 144\)

$\blacksquare$