Binomial Theorem/Examples/4th Power of Sum
< Binomial Theorem | Examples(Redirected from Fourth Power of Sum)
Jump to navigation
Jump to search
Example of Use of Binomial Theorem
- $\paren {x + y}^4 = x^4 + 4 x^3 y + 6 x^2 y^2 + 4 x y^3 + y^4$
Proof
Follows directly from the Binomial Theorem:
- $\ds \forall n \in \Z_{\ge 0}: \paren {x + y}^n = \sum_{k \mathop = 0}^n \binom n k x^{n - k} y^k$
putting $n = 4$.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 2$: Special Products and Factors: $2.5$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Binomial Series: $20.7$
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $1$: Some Preliminary Considerations: $1.2$ The Binomial Theorem
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 2$: Special Products and Factors: $2.5.$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 22$: Taylor Series: Binomial Series: $22.7.$