Primitive of Reciprocal of 1 plus Cosine of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {1 + \cos a x} = \frac 1 a \tan \frac {a x} 2 + C$


Corollary

$\ds \int \frac {\d x} {1 + \cos x} = \tan \frac x 2 + C$


Proof

\(\ds u\) \(=\) \(\ds \tan \frac x 2\)
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {1 + \cos x}\) \(=\) \(\ds \int \frac {\dfrac {2 \rd u} {1 + u^2} } {1 + \dfrac {1 - u^2} {1 + u^2} }\) Weierstrass Substitution
\(\ds \) \(=\) \(\ds \int \frac {2 \rd u} {1 + u^2 + \paren {1 - u^2} }\) multiplying top and bottom by $1 + u^2$
\(\ds \) \(=\) \(\ds \int \d u\) simplifying
\(\ds \) \(=\) \(\ds u + C\) Primitive of Constant
\(\ds \) \(=\) \(\ds \tan \frac x 2 + C\) substituting for $u$
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {1 + \cos a x}\) \(=\) \(\ds \frac 1 a \tan \frac {a x} 2 + C\) Primitive of Function of Constant Multiple

$\blacksquare$


Also see


Sources