1 can be Expressed as Sum of 4 Distinct Unit Fractions in 6 Ways/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

The number $1$ can be expressed as the sum of $4$ distinct unit fractions in $6$ different ways:

\(\ds 1\) \(=\) \(\ds \frac 1 2 + \frac 1 3 + \frac 1 7 + \frac 1 {42}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 3 + \frac 1 8 + \frac 1 {24}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 3 + \frac 1 9 + \frac 1 {18}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 3 + \frac 1 {10} + \frac 1 {15}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 4 + \frac 1 5 + \frac 1 {20}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 4 + \frac 1 6 + \frac 1 {12}\)


Proof

From Sum of 4 Unit Fractions that equals 1:

There are $14$ ways to represent $1$ as the sum of exactly $4$ unit fractions.


This includes repeated unit fractions.


The full list is:

\(\text {(1)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 3 + \dfrac 1 7 + \dfrac 1 {42}\)
\(\text {(2)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 3 + \dfrac 1 8 + \dfrac 1 {24}\)
\(\text {(3)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 3 + \dfrac 1 9 + \dfrac 1 {18}\)
\(\text {(4)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 3 + \dfrac 1 {10} + \dfrac 1 {15}\)
\(\text {(5)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 3 + \dfrac 1 {12} + \dfrac 1 {12}\)
\(\text {(6)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 4 + \dfrac 1 5 + \dfrac 1 {20}\)
\(\text {(7)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 4 + \dfrac 1 6 + \dfrac 1 {12}\)
\(\text {(8)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 4 + \dfrac 1 8 + \dfrac 1 8\)
\(\text {(9)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 5 + \dfrac 1 5 + \dfrac 1 {10}\)
\(\text {(10)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 2 + \dfrac 1 6 + \dfrac 1 6 + \dfrac 1 6\)
\(\text {(11)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 3 + \dfrac 1 3 + \dfrac 1 4 + \dfrac 1 {12}\)
\(\text {(12)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 3 + \dfrac 1 3 + \dfrac 1 6 + \dfrac 1 {6}\)
\(\text {(13)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 3 + \dfrac 1 4 + \dfrac 1 4 + \dfrac 1 6\)
\(\text {(14)}: \quad\) \(\ds \) \(\) \(\ds \dfrac 1 4 + \dfrac 1 4 + \dfrac 1 4 + \dfrac 1 4\)


The result follows from inspection: solutions $(1)$, $(2)$, $(3)$, $(4)$, $(6)$ and $(7)$ are the only solutions of the above such that the denominators of the summands are distinct.

$\blacksquare$