# 288

Previous  ... Next

## Number

$288$ (two hundred and eighty-eight) is:

$2^5 \times 3^2$

The $8$th pentagonal pyramidal number after $1$, $6$, $12$, $40$, $75$, $126$, $196$:
$288 = 1 + 5 + 12 + 22 + 35 + 51 + 70 + 92 = \dfrac {8^2 \left({8 + 1}\right)} 2$

The $4$th superfactorial after $1$, $2$, $12$:
$288 = 4\$ = 4! \times 3! \times 2! \times 1!$The$28$th powerful number after$1$,$4$,$8$,$9$,$16$,$25$,$\ldots$,$144$,$169$,$196$,$200$,$216$,$225$,$243$,$256$The smaller of the$2$nd pair of consecutive powerful numbers:$288 = 2^5 \times 3^2$,$289 = 17^2$The$30$th highly abundant number after$1$,$2$,$3$,$4$,$6$,$8$,$10$,$\ldots$,$120$,$144$,$168$,$180$,$210$,$216$,$240$:$\sigma \left({288}\right) = 819$The$11$th positive integer after$64$,$96$,$128$,$144$,$160$,$192$,$216$,$224$,$240$,$256$with$6$or more prime factors:$288 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \left({\times \, 3}\right)$The$4$th positive integer after$128$,$192$,$256$with$7$or more prime factors:$288 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$The$20$th untouchable number after$2$,$5$,$52$,$88$,$96$,$120$,$124$,$146$,$162$,$188$,$206$,$210$,$216$,$238$,$246$,$248$,$262$,$268$,$276$The product of the number of edges, edges per face and faces of a cube. The product of the number of edges, edges per face and faces of a regular octahedron. The smallest integer multiple of$9$all of whose digits are even:$288 = 32 \times 9\$