# 288

Jump to navigation Jump to search

Previous  ... Next

## Number

$288$ (two hundred and eighty-eight) is:

$2^5 \times 3^2$

The smallest integer multiple of $9$ all of whose digits are even:
$288 = 32 \times 9$

The product of the number of edges, edges per face and faces of a cube.

The product of the number of edges, edges per face and faces of a regular octahedron.

The smaller of the $2$nd pair of consecutive powerful numbers:
$288 = 2^5 \times 3^2$, $289 = 17^2$

The $4$th superfactorial after $1$, $2$, $12$:
$288 = 4\$ = 4! \times 3! \times 2! \times 1!$The$4$th positive integer after$128$,$192$,$256$with$7$or more prime factors:$288 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$The$8$th pentagonal pyramidal number after$1$,$6$,$12$,$40$,$75$,$126$,$196$:$288 = 1 + 5 + 12 + 22 + 35 + 51 + 70 + 92 = \dfrac {8^2 \paren {8 + 1} } 2$The$11$th positive integer after$64$,$96$,$128$,$144$,$160$,$192$,$216$,$224$,$240$,$256$with$6$or more prime factors:$288 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \paren {\times \, 3}$The$20$th untouchable number after$2$,$5$,$52$,$88$,$96$,$120$,$124$,$146$,$162$,$188$,$206$,$210$,$216$,$238$,$246$,$248$,$262$,$268$,$276$The$28$th powerful number after$1$,$4$,$8$,$9$,$16$,$25$,$\ldots$,$144$,$169$,$196$,$200$,$216$,$225$,$243$,$256$The$30$th highly abundant number after$1$,$2$,$3$,$4$,$6$,$8$,$10$,$\ldots$,$120$,$144$,$168$,$180$,$210$,$216$,$240$:$\map {\sigma_1} {288} = 819\$