# 326

Previous  ... Next

## Number

$326$ (three hundred and twenty-six) is:

$2 \times 173$

The $11$th positive integer after $200$, $202$, $204$, $205$, $206$, $208$, $320$, $322$, $324$, $325$ that cannot be made into a prime number by changing just $1$ digit

The $15$th inconsummate number after $62$, $63$, $65$, $75$, $84$, $95$, $161$, $173$, $195$, $216$, $261$, $266$, $272$, $276$:
$\nexists n \in \Z_{>0}: n = 326 \times \map {s_{10} } n$

The $27$th untouchable number after $2$, $5$, $52$, $88$, $96$, $120$, $124$, $\ldots$, $262$, $268$, $276$, $288$, $290$, $292$, $304$, $306$, $322$, $324$

The $32$nd noncototient after $10$, $26$, $34$, $50$, $\ldots$, $244$, $260$, $266$, $268$, $274$, $290$, $292$, $298$, $310$:
$\nexists m \in \Z_{>0}: m - \map \phi m = 326$
where $\map \phi m$ denotes the Euler $\phi$ function

The $51$st happy number after $1$, $7$, $10$, $13$, $19$, $23$, $\ldots$, $226$, $230$, $236$, $239$, $262$, $263$, $280$, $291$, $293$, $301$, $302$, $310$, $313$, $319$, $320$:
$326 \to 3^2 + 2^2 + 6^2 = 9 + 4 + 36 = 49 \to 4^2 + 9^2 = 16 + 81 = 97 \to 9^2 + 7^2 = 81 + 49 = 130 \to 1^2 + 3^2 + 0^2 = 1 + 9 + 0 = 10 \to 1^2 + 0^2 = 1$