3367

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

Number

$3367$ (three thousand, three hundred and sixty-seven) is:

$7 \times 13 \times 37$


The $16$th Fermat pseudoprime to base $3$ after $91$, $121$, $286$, $671$, $703$, $949$, $1105$, $1541$, $1729$, $1891$, $2465$, $2665$, $2701$, $2821$, $3281$:
$3^{3367} \equiv 3 \pmod {3367}$


The $34$th centered hexagonal number after $1$, $7$, $19$, $37$, $61$, $91$, $127$, $\ldots$, $2791$, $2977$, $3169$:
$3367 = \ds 1 + \sum_{k \mathop = 1}^{34 - 1} 6 k = 34^3 - 33^3$


The $37$th heptagonal number after $1$, $7$, $18$, $34$, $55$, $81$, $112$, $\ldots$, $2205$, $2356$, $2512$, $2673$, $2839$, $3010$, $3186$:
$3367 = \ds \sum_{k \mathop = 1}^{37} \paren {5 k - 4} = \dfrac {37 \paren {5 \times 37 - 3} } 2$


To multiply $3367$ by a $2$-digit integer $\sqbrk {xy}$, divide the $6$-digit integer $\sqbrk {xyxyxy}$ by $3$.


Also see



Sources